DEVELOPMENT OF NON-PROPRIETARY ULTRA-HIGH PERFORMANCE CONCRETE

FHWA/MT-17-010/8237-001

Final Report

prepared for THE STATE OF MONTANA DEPARTMENT OF TRANSPORTATION

in cooperation with THE U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

December 2017

prepared by Michael Berry, PhD Richard Snidarich Camylle Wood

Civil Engineering Department Western Transportation Institute Montana State University - Bozeman

RESEARCH PROGRAMS

DEVELOPMENT OF NON-PROPRIETARY ULTRA-HIGH PERFORMANCE CONCRETE

Final Report

Prepared by:

Michael Berry, PhD Associate Professor

Richard Snidarich Graduate Research Assistant

Camylle Wood Graduate Research Assistant

of the

Civil Engineering Department Western Transportation Institute

College of Engineering Montana State University – Bozeman

Prepared for:

Montana Department of Transportation

Research Programs 2701 Prospect Avenue P.O. Box 201001 Helena, Montana 59620-1001

December, 2017

You are free to copy, distribute, display, and perform the work; make derivative works; make commercial use of the work under the condition that you give the original author and sponsor credit. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the sponsor. Your fair use and other rights are in no way affected by the above.

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. FHWA/MT-17-010/8237-001	2. Government Access No.	3. Recipient's Catalog	g No.
4. Title and Subtitle		5. Report Date	
Development of Non-Proprietary U	Iltra-High Performance Concrete	December, 2017	
		6. Performing Organiz	zation Code
7. Author(s)		8. Performing Organiz	zation Report Code
Michael Berry, Richard Snidarich,	Camylle Wood		1
9. Performing Organization Name	and Address	10. Work Unit No. (T	RAIS)
Civil Engineering)
Western Transportation Institute		11.0.4.4.0.4	NT
PO Box 174250		11. Contract or Grant	NO.
Montana State University - Bozem	an	MDT Project #9227 0	01
Bozeman, Montana 59717-4250		MD1 Project #8257-0	01
12. Sponsoring Agency Names an	d Addresses	13. Type of Report an	d Period Covered
Research Programs		Final Report	
Montana Department of Transporta	ation (SPR)	April 2015 – Decembe	er 2017
http://dx.doi.org/10.13039/1000092	209	14. Sponsoring Agence	cy Code
2701 Prospect Avenue		5401	•
PO Box 201001			
Helena MT 59620-1001			
15. Supplementary Notes			
Conducted in cooperation with the	e U.S. Department of Transportat	ion, Federal Highway A	dministration. This
report can be found at <u>http://www.</u>	mdt.mt.gov/research/projects/mat/	high_performance_conc	rete.shtml.
16. Abstract			
Ultra-high performance concrete	(UHPC) has mechanical and du	rability properties that	far exceed those of
conventional concrete. Particularly	y, UHPC has compressive and pos	t-cracking tensile streng	ths of around 20 ksi
and 0.72 ksi, respectively. Thus, elements made with UHPC are thinner/lighter than elements made with			
conventional concrete. The enhan	iced durability properties of UH	PC also allow for long	er service lives and
decreased maintenance costs. Ho	ilable/proprietory mixed costing of	tional concrete application	tions has been cost
promotive, with commercially ava	mable/proprietary mixes costing o	ver 20 times conventiona	ai concrete mixes.
The overall objective of this resear	rch was to develop and charactering	ze economical non-prop	rietary UHPC mixes
made with materials readily availa	ble in Montana. This objective wa	is achieved by first ident	tifying and obtaining
suitable/economical materials to be	e used in UHPC. Specifically, the	materials identified and	used in this research
were simply Type I/II portland ce	ement, class F fly ash, fine masor	nry sand, silica tume, a	nd high range water
reducer. UHPC mixes were then	developed/characterized/optimized	a by using a statistical	experimental design
selected for further evaluation thro	ugh a suite of mechanical and dur	ovided desired workabli	developed as part of
this research obtained compressive	strengths of approximately 20 ksi	with flows of 8-11 inch	es developed as part of
this research obtained compressive	strengths of approximately 20 ks	with nows of 6-11 men	
The mechanical properties tested	in this research were compressiv	e and tensile strength, e	elastic modulus, and
shrinkage. Durability tests includ	ed alkali-silica reactivity, absorpt	ion, abrasion, chloride j	permeability, freeze-
thaw resistance, and scaling.		10 Distail diss Otation	
17. Key words	UDC fiber reinforced concrete	18. Distribution State	ment
ultra-nign performance concrete, U	HPC, liber-reinforced concrete,	through NTIS Springf	Sold Virginia 22161
strength durability tests modulus	of elasticity freeze than	unougn N 115, Springr	ielu, virginia 22101.
durability physical properties shri	nkage admixtures abrasion		
tests performance measurement h	ridge construction permeability		
lesis, performance measurement, b	inge construction, permetability.		
19. Security Classif. (of this	20. Security Classif. (of this	21. No. of Pages	22. Price
report)	page)	128	
Unclassified	Unclassified		

DISCLAIMER STATEMENT

This document is disseminated under the sponsorship of the Montana Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Montana and the United States Government assume no liability of its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policies of the Montana Department of Transportation or the United States Department of Transportation.

The State of Montana and the United States Government do not endorse products of manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document.

This report does not constitute a standard, specification, or regulation.

ALTERNATIVE FORMAT STATEMENT

MDT attempts to provide accommodations for any known disability that may interfere with a person participating in any service, program, or activity of the Department. Alternative accessible formats of this information will be provided upon request. For further information, call (406) 444-7693, TTY (800) 335-7592, or Montana Relay at 711.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support for this project provided by the Montana Department of Transportation (MDT). The authors would also like to recognize and thank the MDT Research Section and the technical panel for their participation in this project. This research would also not have been possible without the support of several undergraduate and graduate student research assistants. In particular, the authors would like to thank Dylan Hjelvik, Jacob Roske, Trygg Moog, and Riley Scherr. The authors would also like to thank Dr. Benjamin Graybeal with the FHWA, and Dr. Rob Shogren with Lafarge/Holcim for their insight throughout this project.

Measurement	Metric	English
	1 cm	0.394 in
Length	1 m	3.281 ft
	1 km	0.621 mile
	1 cm^2	0.155 in ²
Area	1 m ²	1.196 yd ²
Volume	1 m ³	1.308 yd ³
	1 ml	0.034 oz
F	1 N	0.225 lbf
Force	1 kN	0.225 kip
0.	1 MPa	145 psi
Stress	1 GPa	145 ksi
Unit Weight	1 kg/m^3	1.685 lbs/yd ³
Velocity	1 kph	0.621 mph

UNIT CONVERSIONS

TABLE OF CONTENTS

Li	st of Fig	ures	vii
Li	st of Tal	ples	X
1	Introd	uction	1
	1.1	Background	1
	1.2	Objectives	1
	1.3	Scope	1
2	Litera	ture Review	2
	2.1	Background	2
	2.2	Non-Proprietary UHPC Research	4
	2.3	Research Related to Proposed Application	5
3	Mater	ials	7
	3.1	Aggregates	7
	3.1.1	Material Characteristics	7
	3.2	Portland Cement	8
	3.3	Silica Fume	9
	3.4	Fly Ash	10
	3.5	High Range Water Reducer	11
	3.6	Steel Fibers	11
	3.7	Material Costs	12
4	Metho	ds	13
	4.1	Mix Design Proportioning Method	13
	4.2	Mixing Procedure	13
	4.3	Flow Testing Procedure	14
	4.4	Specimen Casting, Curing, Preparation, and Compression Testing Procedures	15
5	Exper	imental Design	18
	5.1	Responses and Variables	19
	5.2	4-Variable CCD	20
	5.2.1	Experimental Design and Measured Responses	20
	5.2.2	Response Surfaces	22
	5.2.3	Discussion	26
	5.3	Follow-on 3-Variable CCD	30
	5.3.1	Experimental Design and Measured Responses	31
	5.3.2	Response Surfaces	32
	5.3.3	Discussion	37
6	Optim	ization, Modification, and Selection of Mix	38
	6.1	Mix Development and Trial Mixes	38
	6.2	Scaled-Up Trial Mixes, Resultant Modifications, and Selection of Mix	41

7 Mech	anical Properties of UHPC Mix	43
7.1	Unconfined Compressive Strength	43
7.2	Elastic Modulus	44
7.3	Flexural Tensile Strength	45
7.4	Splitting Tensile Strength	46
7.5	Shrinkage	47
8 Durat	pility Of UHPC Mix	48
8.1	Abrasion	48
8.2	Absorption	48
8.3	Alkali Silica Reactivity	49
8.4	Chloride Permeability	49
8.5	Freeze-Thaw Resistance	50
8.6	Scaling	51
9 Sumn	nary and Conclusions	53
Reference	25	55
Appendix	A: 4-Variable RSM Mix Proportions	57
Appendix	B: Trial Mix Proportions	85
Appendix	C: 3-Variable RSM Mix Proportions	93
Appendix	D: Optimization Mix Proportions	110

LIST OF FIGURES

Figure 1: Gradation Limits and Fine Aggregate Gradation Curve	8
Figure 2: Hobart A200 Mixer	14
Figure 3: Spread Cone Mold and spread measurement	15
Figure 4: Cylinder end grinder and prepared test specimen	16
Figure 5: UHPC specimen before and after testing	17
Figure 6: Flow vs. HRWR/c Ratio and w/c Ratio	23
Figure 7: Effect of HRWR/c Ratio and w/c Ratio on Flow	23
Figure 8: Flow vs. Sand/c Ratio and SF/FA Ratio	24
Figure 9: Effect of SF/FA Ratio and Sand/c Ratio on Flow	24
Figure 10: 28-day Compressive Strength vs. HRWR/c Ratio and w/c Ratio	25
Figure 11: Effect of HRWR/c Ratio and w/c Ratio on 28-day Compressive Strength	25
Figure 12: 28-day Compressive Strength vs. Sand/c Ratio and SF/FA Ratio	26
Figure 13: Effect of SF/FA Ratio and Sand/c Ratio on 28-day Compressive strength	26
Figure 14: 4-Variable Sand	27
Figure 15: New Sand	27
Figure 16: 4-Variable Sand Sieve Analysis	
Figure 17: New Sand Sieve Analysis	29
Figure 18: 56-day Compressive Strength vs. SF/FA Ratio and w/c Ratio	32
Figure 19: 56-day Compressive Strength vs. HRWR/c Ratio and SF/FA Ratio	
Figure 20: 56-day Compressive Strength vs. HRWR/c Ratio and w/c Ratio	
Figure 21: Flow vs. SF/FA Ratio and w/c Ratio	34
Figure 22: Flow vs. HRWR/c Ratio and SF/FA Ratio	34
Figure 23: Flow vs. HRWR/c Ratio and w/c Ratio	35
Figure 24: Compressive Strength vs. SF/FA Ratio and w/c Ratio	35
Figure 25: Compressive Strength vs. HRWR/c Ratio and SF/FA Ratio	
Figure 26: Compressive Strength vs. HRWR/c Ratio and w/c Ratio	
Figure 27: Cost vs. HRWR/c Ratio and SF/FA Ratio	37
Figure 28: 3M1 Optimization Contour Lines	
Figure 29: 3M2 Optimization Contour Lines	40
Figure 30: 3M3 Optimization Contour Lines	40
Figure 31: 3M4 Optimization Contour Lines	41
Figure 32: Unconfined Compressive Strength vs. Time	44
Figure 33: Elastic Modulus	45
Figure 34: Splitting Tensile Strength vs. Time	47
Figure 35: Average Shrinkage Strain vs. Time	47
Figure 36: Average ASR Expansion vs Time	49
Figure 37: Relative Dynamic Modulus vs. Cycles	51

Figure 38: Scaling Surface Conditions	
Figure 39: Mix 1 Proportions	
Figure 40: Mix 2 Proportions	
Figure 41: Mix 3 Proportions	60
Figure 42: Mix 4 Proportions	61
Figure 43: Mix 5 Proportions	
Figure 44: Mix 6 Proportions	
Figure 45: Mix 7 Proportions	64
Figure 46: Mix 8 Proportions	
Figure 47: Mix 9 Proportions	
Figure 48: Mix 10 Proportions	
Figure 49: Mix 11 Proportions	
Figure 50: Mix 12 Proportions	
Figure 51: Mix 13 Proportions	
Figure 52: Mix 14 Proportions	71
Figure 53: Mix 15 Proportions	
Figure 54: Mix 16 Proportions	
Figure 55: Mix 17 Proportions	
Figure 56: Mix 18 Proportions	
Figure 57: Mix 19 Proportions	
Figure 58: Mix 20 Proportions	77
Figure 59: Mix 21 Proportions	
Figure 60: Mix 22 Proportions	
Figure 61: Mix 23 Proportions	80
Figure 62: Mix 24 Proportions	
Figure 63: Mix 25 C Proportions	
Figure 64: Mix 26 C Proportions	
Figure 65: Mix 27 C Proportions	
Figure 66: Mix S1 Proportions	
Figure 67: Mix S2 Proportions	
Figure 68: Mix S3 Proportions	
Figure 69: Mix S4 Proportions	
Figure 70: Mix S5 Proportions	
Figure 71: Mix S6 Proportions	91
Figure 72: Mix S7 Proportions	
Figure 73: Mix 3-1 Proportions	
Figure 74: Mix 3-2 Proportions	
Figure 75: Mix 3-3 Proportions	
Figure 76: Mix 3-4 Proportions	

Figure 77: Mix 3-5 Proportions	98
Figure 78: Mix 3-6 Proportions	99
Figure 79: Mix 3-7 Proportions	100
Figure 80: Mix 3-8 Proportions	101
Figure 81: Mix 3-9 Proportions	102
Figure 82: Mix 3-10 Proportions	103
Figure 83: Mix 3-11 Proportions	104
Figure 84: Mix 3-12 Proportions	105
Figure 85: Mix 3-13 Proportions	106
Figure 86: Mix 3-14 Proportions	107
Figure 87: Mix 3-15C Proportions	108
Figure 88: Mix 3-16 C Proportions	109
Figure 89: Mix 3M1 Proportions	111
Figure 90: Mix 3M2 Proportions	112
Figure 91: Mix 3M3 Proportions	113
Figure 92: Mix 3M4 Proportions	114
Figure 93: Selected Mix with Steel Fibers	115

LIST OF TABLES

Table 1: Fine Aggregate Gradation Specifications	8
Table 2: Chemical and Physical Properties of Portland Cement, ASTM C150	9
Table 3: Chemical and Physical Properties of Silica Fume, ASTM C1240	10
Table 4: Chemical and Physical Properties of Fly Ash, ASTM C618	11
Table 5: Material Costs	12
Table 6: Material Specific Gravities	13
Table 7: Responses and Target Values	19
Table 8: Independent Variables and Ranges	19
Table 9: Design Points for Initial Experimental Design	20
Table 10: Summary of Mixes and Measured Results for Initial Experimental Design	21
Table 11: Response Statistics for Initial Experimental Design	22
Table 12: Additional Trial Mix Results	
Table 13: Design Points for Follow-on Experimental Design	
Table 14: Summary of Mixes and Measured Results for Follow-On Experimental Design	
Table 15: Response Statistics for Follow-on Experimental Design	
Table 16: Optimized Mix Summary and Results	
Table 17: Selected-UHPC Mix Parameters	42
Table 18: Mechanical Properties	43
Table 19: Unconfined Compressive Strength	43
Table 20: Elastic Modulus	44
Table 21: Flexural Tensile Strength	45
Table 22: Splitting Tensile Strength	46
Table 23: Durability Properties	
Table 24: Abrasion tests results	
Table 25: Chloride permeability results	
Table 26: Freeze-thaw durability results	

1 INTRODUCTION

1.1 Background

Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Thus, elements made with UHPC are thinner/lighter than elements made with conventional concrete. The enhanced durability properties of UHPC also allow for longer service lives and decreased maintenance costs. However, using UHPC in conventional concrete applications has been cost prohibitive, with commercially available/proprietary mixes exceeding \$2,000 per cubic yard, which is about 20 times the cost of conventional concrete.

1.2 Objectives

The overall objectives of this project were to develop and characterize non-proprietary UHPC mix designs made with materials readily available in Montana. These mixes are anticipated to be significantly less expensive than commercially available UHPC mixes, thus allowing for the use of UHPC in construction projects in Montana. In particular, the Montana Department of Transportation Bridge Bureau (MDT) is interested in using UHPC as a field-cast jointing material between precast concrete deck panels and girders and between the flanges of adjacent girders.

1.3 Scope

These objectives were realized through the following tasks:

- A literature review was conducted to summarize material behaviors documented in past UHPC studies.
- Suitable UHPC mixes were developed using response surface methodology (RSM). RSM was used to designate a test matrix of trial batches to be experimentally evaluated. Data from these trial batches were then used to create analytical models consisting of a set of regression equations to be used to investigate the effects of the various constituents on concrete performance, specifically, compressive strength, workability (flow), and cost. These models were ultimately used for optimization of mix designs. This task first consisted of an experimental design with four independent variables (e.g., water-to-cement ratio and sand-to-cement ratio) over a wide range of values. A follow-on experimental design was carried out with three independent variables over a refined range of values. The surfaces resulting from this 3-variable design were then used to obtain optimized mixes that met desired target parameters.
- The resulting mixes obtained in the previous task were then scaled-up to more realistic batch sizes, and the effect of including steel fibers was investigated. The mixes were then modified accordingly to achieve a mix that consistently delivered the desired target parameters (e.g., 8-inch flow, 20 ksi 28-day compressive strength). The mechanical and durability performance of the mix was then characterized.

2 LITERATURE REVIEW

Previous research has focused on the development of UHPC mixes, the characterization of their mechanical properties, and the performance of structural elements produced with them. This chapter provides background on the basic material properties of UHPC, followed by a discussion of previous research conducted on the development of non-proprietary UHPC. This chapter concludes with a summary of research conducted specifically pertaining to the proposed application of joining precast concrete elements by MDT.

2.1 Background

UHPC is a term used to describe concrete composites having compressive strengths of approximately 20 ksi, post-cracking tensile strength of at least 0.72 ksi, and a discontinuous pore structure that improves durability by limiting permeability. This material was initially introduced in the early 1990s and was referred to as reactive powder concrete (RPC). Early UHPC designs required the use of special mixing techniques, as well as steam curing. A significant amount of research has been conducted to develop UHPC that can be mixed and cured using more conventional methods (Graybeal & Tanesi, 2007; Wille, Naaman, El-Tawil, & Parra-Montesinos, 2012). The exceptional properties of UHPC are achieved with: (1) low water-to-cement ratios, (2) high particle packing density, (3) high quality aggregates and cements, (4) supplemental cementitious materials, (5) high particle dispersion during mixing, and (6) in some cases the incorporation of fiber reinforcement. High particle packing density (low porosity) is one of the key principles surrounding UHPC design. Previous research has shown that there is a strong correlation between the mechanical performance of the cementitious paste and its rheological behavior, and changes in particle packing density can be indirectly evaluated with a spread test performed in accordance with ASTM C230 (Wille, Naaman, & Parra-Montesinos, 2011). Achieving the highest possible packing density of the granular constituents is one of the primary factors leading to the reduction of porosity in UHPC. This is achieved through the use of a combination of fine aggregates, silica fume, cement, and supplemental materials (Wille & Boisvert-Cotulio, 2015; Zdeb, 2013). Another important factor in the reduction of porosity of UHPC is a decrease in water-binder ratio. UHPC has a very low water-to-cement ratio (w/c), generally ranging from 0.2 to 0.3 by weight. By increasing the particle packing density the volume of water-filled voids within the paste is reduced. By physically trapping less water in voids, more water is available to coat the surface of the particles, which leads to an overall reduction of paste viscosity. This improved rheological behavior allows the w/c ratio to be reduced while still maintaining adequate workability. This reduction in w/c is one of the key requirements for producing high-strength paste, and subsequently UHPC (Wille & Boisvert-Cotulio, 2015). Additionally, this low w/c helps to limit the amount of unreacted water found in the mix, thus decreasing the formation of capillary pores during the setting process and maintaining the necessary low porosity (Zdeb, 2013).

UHPC's high compressive strength, pre- and post-cracking tensile strength, and high durability make it a potentially desirable material for use in structures. Although the initial cost of UHPC far exceeds conventional concrete mixes, the use of UHPC has been shown to reduce life-cycle costs (Piotrowski & Schmidt, 2012), as the increased durability of UHPC results in a longer service life and decreased maintenance costs. Further, the use of UHPC can result in smaller/lighter structural elements, thus using less material. Oftentimes, high strength steel fibers are required to achieve specified ductility and toughness

requirements, and are commonly referred to as ultra-high performance fiber reinforced concrete (UHP-FRC) (Wille & Boisvert-Cotulio, 2015; Wille et al., 2012).

UHPC became commercially available in the U.S. through several proprietary sources around the year 2000. Since its introduction to the commercial market, the use of UHPC in various applications has been the focus of multiple research endeavors. Specifically, UHPC has been used in field-cast connections of prefabricated bridge components (Graybeal, 2010; Yuan & Graybeal, 2014), precast/prestressed girders (Rouse, Wipf, Phares, Fanous, & Berg, 2011), precast piles (Ng, Garder, & Sritharan, 2015; Wipf, Sritharan, Abu-Hawash, Phares, & Bierwagen, 2011), and waffle-type bridge decks (S. Aaleti & Sritharan, 2014; S. R. Aaleti, Sritharan, Bierwagen, & Wipf, 2011; Honarvar, Sritharan, Rouse, & Aaleti, 2016). Additionally, the seismic performance of UHPC elements/connections has been the subject of several research efforts (Lee, Huang, Song, & O'Connor, 2014; Zohrevand & Mirmiran, 2013). It should also be noted that the use of UHPC in transportation applications has been actively researched/promoted by the Federal Highway Administration (FHWA, 2013; Goodspeed, Vanikar, & Cook, 2013; C. Goodspeed, S. Vanikar, & R. A. Cook, 1996; C. H. Goodspeed, S. Vanikar, & R. A. Cook, 1996; Graybeal, 2006a, 2006b, 2011, 2012; Yuan & Graybeal, 2014, 2015). Of particular interest to the proposed use of UHPC by MDT, this research included a study on the bond properties of UHPC (Yuan & Graybeal, 2014, 2015), and these findings are discussed below. Although the use of UHPC in these varied applications has been shown to be beneficial, a majority of this research has used commercially available/proprietary mixes, the cost of which has hindered its widespread use in infrastructure projects (as is the case in the proposed use discussed herein). These proprietary mixes range in cost from \$1,000-\$2,000 per cubic yard, which is 10 to 20 times the cost of conventional concrete.

While much of the material optimization of UHPC is done to improve its mechanical and structural behaviors, this optimization also leads to an improvement of its durability. Graybeal & Tanesi (2007) performed a comprehensive study focusing on the performance of UHPC subjected to standard durability tests. They found that the dynamic modulus of tested samples was 96% or greater after performing ASTM C 666 freeze-thaw cycles. After performing ASTM C 1260 tests, the results showed that there is little concern for alkali-silica reaction (ASR) problems in UHPC. Unintended curing of UHPC may take place during the testing process, but due to the low permeability and high silica fume content, UHPC is not expected to be susceptible to ASR. UHPC performed exceptionally well during ASTM C 672 scaling test, as well as AASHTO T259 chloride ion penetration tests. Untreated (traditionally cured) specimens showed chloride ion penetration that ranged from very low at 28 days to negligible at 56 days when subjected to ASTM C1202 testing.

In addition to UHPC, a fair amount of research has been conducted on engineered cementitious composites (ECC). ECC are a class of high-performance fiber-reinforced cementitious composites. They feature moderate compressive strengths (4.3 to 10.2 ksi) and high ductility while utilizing medium fiber contents. ECC can achieve tensile strain capacities from 3 to 6% compared to commercial UHPC with a tensile strain capacity of 0.1% (Ranade, Li, Stults, Heard, & Rushing, 2013). These large strain capacities are achieved by the development of multiple cracks rather than a continuous increase of crack widths (Folliard, Du, & Trejo, 2003; Wang & Li, 2007). ECC has been successfully utilized for dam repair, bridge deck overlays, coupling beams, and various structural elements (Li, 2004). Extensive research in the development of this

material has been conducted by the University of Michigan, including the testing of a full-scale ECC link slab used to replace expansion joints on simply supported bridges (Lepech & Li, 2009).

2.2 Non-Proprietary UHPC Research

In 2011, Wille et al. (2011) performed research focused primarily on optimizing the proportions of UHPC constituents using materials commercially available in the U.S. In the first phase of the study, the compressive strengths and the rheological behavior of 38 paste mixtures were evaluated. These 38 mixes quantified the effects of various cement types (C), w/c ratio, silica fume (SF) types, as well as the type and dosage rate of high range water reducer (HRWR). Glass powder (GP) was also used as a supplementary cementitious material (SCM) in these mixes. From this study, it was found that a proportion of C:SF:GP of 1.0:0.25:0.25 provided optimum spread (flow) values. It was also noted that adjusting these proportions resulted in very little change of observed compressive strength, but did result in changes in spread, which indicated improved particle packing density of the paste. Additionally, it was observed that by optimizing particle packing density of the powder constituents, acceptable flow values were observed with HRWR dosage rates of 1 to 8% by cement weight. Reducing the dosage rate to the lowest possible amount also resulted in higher compressive strengths. Once an optimized paste was determined, two types of fine silica sand were introduced at a proportion of 1.4:1.0 by cement weight. This ratio was used to keep the amount of cement low and therefore reduce shrinkage. Compressive strengths of 23.6 to 29.1 ksi were achieved during this phase of the study, with the largest compressive strength observed with the addition of high strength steel fibers at a ratio of 2.5% by volume. Additional research conducted by Wille et al. (2012) included more focused research on the performance of UHP-FRC. By utilizing twisted high strength steel fibers at a proportion of 8% by volume, the researchers were able to achieve compressive strengths up to 42 ksi and tensile stresses up to 5.4 ksi with a peak strain of 1.1%. These values were achieved without the use of any special curing or mixing techniques.

A research study recently completed by (FHWA, 2013) demonstrated promising advances in the development of non-proprietary UHPC mixes with material costs ranging from \$355 to \$500/vd³ for nonfiber-reinforced mixes (adding fiber reinforcement increases the material costs by $470/vd^3$). This study used a three-level approach to develop suitable UHPC mix designs for various regions in the U.S. Level 1 focused on optimization of the cementitious paste. This study considered mechanical performance, durability, rheological properties, and economy. The effects of various types of SCMs were also examined. The SCMs used in this study were GP, metakaolin, fly-ash (FA), limestone powder, and ground granulated blast furnace slag (GGBS). The influences of the various SCMs were monitored using the spread value of the paste and compressive strength, and the pastes in this study were compared to the reference pastes developed by Wille et al. (2011). The second level of the study examined the performance of the cementitious matrix and the effects of different types of aggregates, the size of aggregates (fine and coarse), as well as the ratio of aggregate to cement by weight. Typical aggregate sources for three regions in the U.S. (Northeast, Upper Midwest, and Northwest) were considered, as well as pure quartz aggregate. Similar to the evaluation of the paste, spread values and compressive strengths were used to evaluate the performance of the cementitious matrix. Level 3 of this research examined the effects of five various commercially available fibers and their effect on the performance of the concrete composite. These fibers included both straight and deformed high strength steel fibers, straight polyvinyl alcohol fibers, and alkali

resistant glass fibers. The performance of the fiber-reinforced composite was determined primarily by its tensile strength.

Additionally, stress-strain behavior under compressive loading was examined, as well as freeze-thaw resistance in accordance with ASTM C666. The best tensile performance was achieved with straight high strength steel fibers with a maximum tensile strength of 1.15 ksi, and after 108 freeze thaw cycles no visible deterioration was noticed. After completion of this study, four fine-aggregate and three coarse-aggregate UHPC mixes were recommended. The material costs of these composites ranged between \$360 and \$500 per cubic yard and \$355 and \$380 per cubic yard respectively (addition of steel fibers adds approximately \$470 per cubic yard). Compressive strengths of 22.5 to 29 ksi were achieved with these recommended mixes, and all mixes exceeded the minimum requirement of 0.72 ksi tensile strength.

A recent study completed by the University of Michigan (El-Tawil, Alkaysi, Naaman, & Hansen, 2016) focused on the development of a cost-optimized non-proprietary UHPC and the evaluation of its mechanical and durability properties. Additionally, this study examined the possibility of using UHPC for field-cast joints used in prestressed bridge construction. Cost optimization was performed by investigating the relationship between the type and amount of the most expensive components (silica fume and silica powder) and the performance of the mix. Material performance was measured through compressive and tensile strength test, while durability was evaluated through freeze-thaw and chloride ion penetration testing. The developed mix used a 50:50 blend of Portland Type I cement and GGBS as the cementitious materials. This UHPC also varied from other non-proprietary UHPC developed through other research in that it used no inert or pozzolanic filler such as glass powder. By removing this expensive component from the composite, a 50% reduction in cost was achieved based on the reference mix developed by Wille et al. (2011) while still obtaining 25.2 ksi compressive and 1.2 ksi post-cracking tensile strengths (1.5% steel fibers by volume). This study also examined bond length of reinforcing steel and joints between precast sections using UHPC, these results are discussed below.

2.3 Research Related to Proposed Application

Precast bridge elements are especially useful to facilitate accelerated construction schedules that are often desired for highway projects. One issue that arises from the use of prefabricated bridge components is their reliance on the performance of field-cast connections. These types of connections often pose constructability, durability, and structural performance issues. The use of UHPC in these field cast connections may improve their performance due to its increased durability, and increased strength, which has been shown to improve bond strength.

Yuan & Graybeal (2014) performed research focused on evaluating the bond of reinforcing steel within UHPC concrete, and found that UHPC has enhanced bond performance when compared to conventional high strength concretes. However, it was determined that neither compressive strength (f'c) nor $f'c'^{1/2}$ are effective for predicting the bond strength in UHPC. A comprehensive study on bond length was also performed at the University of Michigan (El-Tawil et al., 2016) on the UHPC blend that was developed during their research. It was determined that this UHPC blend required significantly less bond length than what is required for normal concrete; however the authors suggest additional research be conducted as their specific results differ from those reported by Yuan & Graybeal (2014) discussed above.

The research conducted by El-Tawil et al. (2016) also included tests of field-cast joints between two precast bridge deck sections using UHPC, and it was determined that a 6-inch joint length could be sufficient for load transfer between the two elements. Graybeal (Graybeal, 2010; Yuan & Graybeal, 2014) also tested field-cast connections and determined that the use of UHPC in such connections can mitigate some of their potential issues. Based on research conducted by Graybeal, full development of reinforcing steel can be achieved in a much shorter length when compared to traditional concrete and grout mixtures. This allows a designer to specify shorter lap splices and connection details that reduce construction complexity and associated costs. The tensile capacity of UHPC as well as its ability to bond exceptionally well to previously cast concrete has also helped to facilitate the design of simpler connection details. The enhanced properties of UHPC can allow for precast bridge deck closure pours of 6 in. or less in length, allowing them to be effectively designed as narrow shear keys. Full-scale structural testing has shown that field-cast UHPC deck connections can perform equally as well or better than a monolithically cast bridge decks. This research also showed that reinforcement in both transverse and longitudinal UHPC-filled connections does not debond from UHPC, even under severe loading conditions. The results of these studies are particularly useful for the proposed application of non-proprietary UHPC by the MDT Bridge Bureau.

3 MATERIALS

To meet the objective of developing cost effective UHPC, it was important to utilize materials that were readily available in Montana. Specifically, the materials used in this research were aggregate, cement, fly ash, silica fume, and HRWR. MDT requested a UHPC mix using only fine aggregate; therefore, no coarse aggregates were examined in this research. This chapter discusses the mix ingredients that were chosen for use in this study.

3.1 Aggregates

For this research, masonry sand processed and packaged by QUIKRETE near Billings, MT, was used as the sole aggregate in the UHPC mixes. This sand was chosen due to its fineness, favorable gradation, economy, and availability, all of which are key to the development of a cost-effective UHPC mix design for use in Montana. Additionally, this sand has been washed and dried; therefore, no moisture content corrections were performed. As will be discussed in more detail in the following section, sands with more favorable gradations could be produced; however, this would increase the cost of the UHPC mix design.

3.1.1 Material Characteristics

Previous research has shown that particle packing density of the aggregates can have a substantial impact on the workability of concrete. Research conducted on self-consolidating concrete (SCC) has shown that a standard s-shaped particle size distribution (PSD) obtained by using the Fuller curve does not provide the proper particle packing density required for SCC, and subsequently UHPC. Use of the Fuller curve in these applications results in mixes with inadequate workability (Brouwers & Radix, 2005). This curve works best for particles sizes larger than 500µm, and therefore does not properly account for the amount of fine particles contained in UHPC mixes. Use of a modified Andreasen and Andersen (A&A) curve (Equation 1) has been found to provide a PSD that is more suited to the particle packing density required for UHPC (Brouwers & Radix, 2005; FHWA, 2013). A PSD that conforms to the following equation provides the optimum particle packing density:

$$P(D) = \frac{D^{q} - D^{q}_{min}}{D^{q}_{max} - D^{q}_{min}}$$
(Equation 1)

The parameter P is the percent of particles passing a sieve with diameter D. Dmin and Dmax are the minimum and maximum particle sizes respectively. The parameter q ranges from 0 to 1, and was found by Andreasen and Anderson to provide the optimum particle packing density when $q\approx 0.37$ (Brouwers & Radix, 2005).

In order to keep costs at a minimum, the research team believed that using a fine aggregate conforming to an existing specification would be the best option for UHPC in Montana. Fine aggregate in accordance with ASTM C144 (Standard Specification for Aggregate for Masonry Mortar) was chosen for use in this experiment. The gradation requirements for both ASTM C144 and the modified A&A curve (Dmax=1.18mm, Dmin=0.075mm, and q=0.37) are shown below in Table 1. Figure 1 below shows the particle size distribution of the upper and lower limits of ASTM C144, the modified A&A curve, and the gradation curve of the fine aggregate (New Sand) used in the follow-on experimental design (discussed in

a later section). It should be noted that the modified A&A curve for particle sizes in the specified range closely matches that of the upper limit provided by the standard specification.

Sieve Size	Percent Passing (ASTM C144)	Percent Passing (A & A Curve)
No. 4	100	NA
No. 8	95 to 100	NA
No. 16	70 to 100	99
No. 30	40 to 75	65
No. 50	20 to 40	37
No. 100	10 to 25	16
No. 200	0 to 10	0

Table 1: Fine Aggregate Gradation Specifications

Figure 1: Gradation Limits and Fine Aggregate Gradation Curve

3.2 Portland Cement

Type I/II Portland cement was used in this study, per MDT specifications. The cement was obtained from the CRH cement plant near Trident, MT. The chemical and physical properties of the cement used in this experiment conformed to ASTM C150, as can be seen in Table 2.

Chemical Properties				
Item Limit Result				
SiO2 (%)	NA	20.6		
Al2O3 (%)	6.0 max	4.0		
Fe2O3 (%)	6.0 max	2.8		
CaO (%)	NA	64.2		
MgO (%)	6.0 max	2.5		
SO3 (%)	3.0 max	3.1		
Loss on Ignition (%)	3.0 max	2.7		
Insoluble Residue (%)	0.75 max	0.4		
CO ₂ (%)	NA	1.7		
Limestone (%)	5.0 max	4.0		
CaCO ₃ in Limestone (%)	70 min	98.0		
Inorganic Processing Addition (%)	5.0 max	1.2		
Potential Phase Compositions:				
C3S (%)	NA	58.0		
C2S (%)	NA	15.0		
C3A (%)	8.0 max	6.0		
C4AF (%)	NA	8.0		
C ₃ S + 4.75C ₃ A (%)	NA	86.5		
Physical I	Properties			
Air Content (%)	12.0 max	29.75		
Blaine Fineness (m2/kg)	260 min	413		
Autoclave Expansion	0.80 max	0.02		
Compressive Strength (Mpa) (psi):				
3 days	12.0 (1740)	27.2 (3940)		
7 days	19.0 (2760)	35.4 (5130)		
Initial Vicat (minutes)	45 - 375	141		
Mortar Bar Expansion (%) (C 1038)	NA			
Heat of Hydration (kJ/kg) (cal/g)				
7 days	NA			

Table 2: Chemical and Physical Properties of Portland Cement, ASTM C150

3.3 Silica Fume

The silica fume used for this study was MasterLife SF 100 from BASF. The research team chose this product because BASF materials are readily available throughout Montana. The chemical and physical properties of the silica fume used in this study conformed to ASTM C1240 and are given in Table 3.

Chemical Properties		
Item	Limit	Result
SiO2 (%)	85.0 min	92.19
SO3 (%)	NA	0.31
CL ⁻ (%)	NA	0.13
Total Alkali (%)	NA	0.85
Moisture Content (%)	3.0 max	0.45
Loss on Ignition (%)	6.0 max	3.07
pH	NA	7.94
Physical Properties		
Fineness (% retained on #325)	10.0 max	0.90
Density (specific gravity)	NA	2.26
Bulk Density (kg/m^3)	NA	739.32
Specific Surface Area (m ² /g)	15.0 min	22.42
Accelerated Pozzolanic Activity - w/ Portland Cement (%)	105 Min	140.41

Table 3: Chemical and Physical Properties of Silica Fume, ASTM C1240

3.4 Fly Ash

Fly ash was selected as the SCM to be used in developing UHPC for this study because of its ease of availability throughout Montana, relatively low cost at approximately \$135 per ton compared to other SCM's such as silica powder at approximately \$800 per ton, as well as its potential to react pozzolanicly with the byproducts of the cement hydration process. Additionally, the spherical particle shape can enhance the flow of the paste (FHWA, 2013). Initial trial mixes were conducted using a Class C fly ash. These initial mixes experienced an accelerated set time due to the self-cementing nature of that type of ash. A Class F fly ash from the Coal Creek Station power plant near Underwood, North Dakota was subsequently used throughout this study. The chemical and physical properties of the fly ash used in this experiment in conformed with the requirements of ASTM C618 as shown in Table 4.

Chemical Properties					
Item Limit Result					
SiO ₂ (%)	NA	54.99			
Al ₂ O ₃ (%)	NA	16.77			
Fe ₂ O ₃ (%)	NA	6.00			
Sum of Constituents	70.0 min	77.76			
SO ₃ (%)	5.0 max	0.5			
CaO (%)	NA	11.4			
Moisture (%)	3.0 max	0.03			
Loss on Ignition (%)	6.0 max	0.06			
Avaliable Alkalis, as Na ₂ O (%)	NA	0.94			
Physical Properties					
Fineness (% retained on #325)	34% max	29.75			
Strength Activity Index (% of control)					
7 days	75% min	78			
28 days	75% min	93			
Water Requirement (% control)	105 % max	95			
Autoclave Soundness (%)	0.8% max	0			
True Particle Density	NA	2.42			

Table 4: Chemical and Physical Properties of Fly Ash, ASTM C618

3.5 High Range Water Reducer

As mentioned in (Wille et al., 2011), HRWR has a large influence on the fresh properties of concrete. Polycarboxylate ether HRWRs are the most prevalent and readily available water reducers on the market. Three different HRWRs from two separate manufacturers were utilized in preliminary trial mix designs. Due to the similar chemical composition and cost (\$17 to \$26 per gallon), the HRWR providing the best workability and least amount of entrapped air was desirable. CHRYSO Fluid Premia 150 from CHRYSO, Inc. was selected as the HRWR admixture for the concrete mixtures examined in this study because it proved to provide the best release of entrapped air and workability in preliminary trial mixes.

3.6 Steel Fibers

The steel fibers used in this research were 0.2 mm diameter by 13mm in length and were supplied by Nycon (Nycon-SF Type I "Needles"). The fibers are made of mono cold-drawn steel and have a specified tensile capacity of 400 ksi and a specified modulus of eleasticity of 29,000 ksi.

3.7 Material Costs

Table 5 provides a summary of approximate material costs and specific manufacturers of the materials used throughout this study. It should be noted that the provided costs do not include freight/shipping or placement costs, as these costs can fluctuate based on market and location.

Material	Manufacturer	Cost (per ton)
Fine Aggregate	QUIKRETE	\$26
Portland Cement, Type I/II	CRH	\$145
Silica Fume	BASF	\$840
Fly Ash, Type F	Coal Creek	\$135
HRWR (per gallon)	CHRYSO, Inc.	\$14
Steel Fibers	Nycon	\$1,600

Table 5: Material Costs

4 METHODS

This chapter discusses the mix design proportioning method, mixing procedure, flow testing procedure, specimen preparation procedure (i.e. specimen casting, curing, and preparation), and compression strength-testing procedures used throughout this study.

4.1 Mix Design Proportioning Method

The mixes performed during this investigation were proportioned using the absolute volume method utilizing selected values for w/c ratio, HRWR/c ratio, SCM/c ratio (includes silica fume and fly ash, and fixed at a value of 0.5), SF/FA ratio, and Sand/c ratio. This proportioning method was chosen because it accounts for variations in the specific gravities of the various concrete constituents. The specific gravities for materials used in this study are shown in Table 6. The mix proportioning sheets for all mixes performed in this study can be found in Appendices A-D.

Material	Specific Gravity
Fine Aggregate	2.60
Portland Cement, Type I/II	3.15
Silica Fume	2.20
Fly Ash, Type F	2.00
HRWR	1.04

Table 6: Material Specific Gravities

4.2 Mixing Procedure

Compared to conventional concrete mixtures, UHPC contains a much larger amount of fine particles. To ensure proper particle dispersion and high packing density, special mixing techniques were required to breakup clumps that can develop when mixing these fine materials. The following section discusses the mixing technique used in this research.

A Hobart A200 bench top mixer was used for mixing UHPC in this research. The A200 is a ¹/₂ horsepower mixer with a 20-quart capacity bowl. The actual mixer used during this experiment can be seen in Figure 2.

Based on recommendations in Wille et al. (2011) and FHWA (2013), all fine aggregate and silica fume were added to the mixer and dry mixed for 5 minutes. The fly ash and cement were then added and mixed for an additional five minutes. After the dry mixing was completed, one third of the required HRWR was added to the mix water. The water and HRWR mixture was slowly added to the bowl within one minute from the start of pouring. The remaining HRWR was then added within one minute. The UHPC was mixed on low speed until becoming fluid, typically 5-10 minutes depending on mix characteristics, and then the speed was increased and mixing continued until desired fluidity was achieved, typically an additional 5-10 minutes.

The summarized mixing procedure is as follows (FHWA, 2013):

- Mix fine aggregate and silica fume for 5 minutes
- Add fly ash and cement and mix an additional 5 minutes
- Add 1/3 of the HRWR to the mix water
- Add the water and HRWR mixture within 1 minute after pouring has started
- Add the remaining HRWR within 1 minute after pouring has started
- Increase mixing speed
- Continue mixing until desired fluidity is achieved (5-10 additional minutes).

Figure 2: Hobart A200 Mixer

4.3 Flow Testing Procedure

The workability of UHPC mixtures was determined using a spread cone mold in accordance with ASTM C230/C230M (Standard Specification for Flow Table for Use in Tests of Hydraulic Cement), as shown in Figure 3. The spread cone and base plate were both moistened with water prior to testing. The spread cone was then filled and lifted from the base. The remaining material in the cone was scraped off onto the base plate. The material on the base plate was allowed to spread until no more movement was detected. The diameter of the spread was measured in two directions and the average value recorded as the spread value to the nearest ¹/₄ inch.

Figure 3: Spread Cone Mold and spread measurement

4.4 Specimen Casting, Curing, Preparation, and Compression Testing Procedures

After performing the flow test, the UHPC was placed into six 3-by-6 inch plastic single-use cylinder molds. The material was added to the molds in two lifts of approximately equal volume. The cylinders were consolidated using a vibration table, and then the plastic covers were placed on the molds. The cylinders were de-molded after approximately 24 hours and placed in a temperature controlled cure room at 100% humidity until compression testing. No special curing methods were used during this experiment.

Before compressive testing, the ends of the cylinders were ground using an automatic cylinder end grinder, shown below in Figure 4, to planeness in accordance with ASTM C39 (Compressive Strength of Cylindrical Concrete Specimens). After preparing the cylinder ends, volume and mass measurements were taken and recorded.

Figure 4: Cylinder end grinder and prepared test specimen

The prepared cylinders were then placed in a Test Mark CM Series hydraulic compression load frame with a 400,000-pound capacity. The cylinders were loaded at a rate of 840 to 1050 lbs/second (approximately 120 to 150 psi/second) until failure based on recommendations from FHWA (2013). Two cylinders from each mix were tested at 7 and 28 days of age respectively. The maximum load at failure was recorded and used to determine the maximum average compressive strength of the UHPC mix at the specified testing intervals. All of the UHPC samples in this experiment were non-fiber reinforced, and due to the sudden and explosive nature of specimen failure, no strain data was collected. Figure 5 below shows a sample before and after failure.

Figure 5: UHPC specimen before and after testing

5 EXPERIMENTAL DESIGN

A statistical experimental design procedure–response surface methodology (RSM)–was used to evaluate the effects of key constituents on concrete performance and then to optimize the mix designs. RSM is a collection of techniques useful for developing, improving, and optimizing processes and mixtures. RSM is commonly used in many applications in which the relationship between input variables and responses are not exactly known, and therefore mechanistic models are not available (Myers & Montgomery, 2002).

Although RSM has been commonly used in the industrial-engineering world for years, it has only been used in concrete mixture design in a limited number of projects over the past decade. The United States Federal Highway Administration (FHWA) conducted an extensive study on the use of statistical methods in concrete mixture design (including RSM) in 2004 (Simon, 2003), and found RSM to be a valuable and effective tool for use in concrete mixture design. Their study concluded with the development and deployment of an internet-based software program to develop and optimize concrete mixtures employing this methodology. RSM was also used successfully by Cihan et al. (2013) to evaluate the effect of conventional concrete constituents on concrete compressive strength. Additionally, RSM has proven particularly beneficial in the development and evaluation of non-conventional concrete mixtures. For example, several studies have focused on using RSM for the development and evaluation of selfconsolidating (Alqadi, Bin Mustapha, Naganathan, & Al-Kadi, 2012; Ghezal & Khayat, 2002; Khayat, Ghezal, & Hadriche, 2000; Long, Lemieux, Hwang, & Khayat, 2012), pervious (Sonebi & Bassuoni, 2013), and foamed (Nambiar & Ramamurthy, 2006) concrete mixtures. Furthermore, it has proven useful in concrete mixtures containing alternate materials, such as paper mill residuals (Mohammed, Fang, Hossain, & Lachemi, 2012), recycled aggregate concrete (Lovato, Possan, Coitinho Dal Molin, Masuero, & Ribeiro, 2012), fly ash aggregate concrete (Kockal & Ozturan, 2011), and recycled asphalt pavement aggregate concrete (Berry, Kappes, & Kappes, 2015).

In RSM, the response is a performance measure or quality characteristic of the process or of the resulting product from that process. For example, in the case of UHPC mixtures, flow and compressive strength are considered responses. Input variables or independent variables are subject to the control of the engineer and potentially influence the responses. In UHPC, these input variables could be water-to-cement ratio and HRWR-to-cement ratio.

The procedure of fitting a response surface to a given process involves designating a set of trial batches that encompasses a range of input variables using a statistical experimental design procedure. These trial batches are then carried out, and the various responses are measured. Data from the trial batches are then compiled to create a model consisting of a set of complex regression equations that can accurately depict the behaviors and interactions of the mix ingredients and the specified end responses (Simon, 2003). This model can then ultimately be used for mixture optimization. The experimental design procedure used in this research was the Central Composite Design (CCD). CCD is an augmented factorial design, which is capable of estimating second-order models for each of the responses of interest without requiring the completion of a three-level factorial experiment. Thus, a reduced number of trial batches, in comparison to other experimental designs, are used to obtain the same statistically verified results (Simon, 2003). In addition to factorial points, this experimental design includes several center point runs to provide an estimate of the pure error, which is associated with the testing procedures. Axial points (outside the region

of interest) are also included to allow for efficient estimation of pure quadratic terms in the regression equations.

The experimental design was implemented in multiple phases in this research. First, initial screening mixes were carried out to identify the general effects of proportions of UHPC constituents, and to determine appropriate independent variables and ranges for these variables. An initial CCD-based investigation was then conducted using four independent variables. A follow-on CCD-based study was then carried out for three selected variables over a refined region of interest suggested by the initial and broader CCD investigation. This chapter discusses the responses and independent variables used in this study, the initial 4-variable CCD experiment, and lastly the follow-on 3-variable CCD experiment. Key findings from both studies are presented in this chapter.

5.1 Responses and Variables

The UHPC mixture responses chosen for this experiment were flow, compressive strength, and cost. The target values for these responses were determined by the research team based on recommendations found during the literature review, and are shown in Table 7.

Response	Specification
Flow	11 to 13 inches
28-Day Compressive Strength	20 ksi
Cost	Maximum of $\$500 \text{ per yd}^3$

Table 7: Responses and Target Values

Before moving forward with the experimental design, several "trial" mixes were performed to qualitatively determine how each constituent would generally effect the overall performance of UHPC mixtures. From these trial mixes and knowledge gained during the literature review, the important mix parameters and their subsequent testing ranges were determined.

The selected independent variables were water-to-cement ratio (w/c), sand-to-cement ratio (Sand/c), silica fume-to-fly ash ratio (SF/FA), and HRWR-to-cement ratio (HRWR/c). It should also be noted that 69% of the weight of HRWR was considered as mix water when calculating w/c ratio, as the remaining 31% consisted of solids (per manufacturer specifications).

The initial experimental design used all four of these independent variables over the ranges specified in Table 8. As previously mentioned, a follow on experimental design was carried out over a refined region of interest. For this second experiment, the Sand/c ratio was fixed at 1.40, and the ranges of the remaining variables are provided in Table 8. The fixing of the Sand/c ratio is discussed in detail in a later section.

Variable	Initial Design	Follow-on Design
w/c Ratio	0.2 to 0.25	0.22 to 0.26
Sand/c Ratio	1.25 to 1.50	1.40 (fixed)
Silica Fume/Fly Ash Ratio	0.85 to 1.15	0.50 to 1.00
HRWR/c Ratio	0.0275 to 0.0625	0.02 to 0.06

Table 8: Independent Variables and Ranges

5.2 4-Variable CCD

An initial experimental design was carried out for all four independent variables presented in the previous section over the shown range. For four variables, the CCD methodology used in this research designates a total of 27 trial batches, which consist of 16 factorial runs, eight one-factor-at-a-time runs at the axial points, and three center point runs. The design points for this CCD are provided in Table 9, while the 27 trial batches resulting from these design points are provided in Table 10. The factorial points in Table 9 are the bounds of the factorial runs, and designate the region of interest, which corresponds to the region in which the resulting response surface models are most applicable.

5.2.1 Experimental Design and Measured Responses

Once designated, these mixes were performed in a laboratory setting, and the responses were recorded. The resulting responses are included in Table 10, with the summary statistics for these responses provided in Table 11. Regression equations were then fit to this data, and the resulting response surfaces were evaluated for statistically significant variables and goodness of fit. The response surfaces for each response have the following general form.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2^2 + \beta_3 x_2 + \beta_4 x_2^2 + \dots + \beta_8 x_4^2 + \beta_9 x_1 x_2 + \beta_{10} x_1 x_3 + \dots + \beta_{14} x_3 x_4$$
(Equation 2)

Where y is the particular response of interest, $x_1 \dots x_4$ are the independent variables, and $\beta_0 \dots \beta_{14}$ are coefficients obtained via regression for each response. A similar equation was used for the follow-on 3-variable CCD discussed in a later section. The variables that were determined to be statistically significant (shaded) and the R² values for each response surface are also included in Table 11. Statistical significance was assessed by analysis of variance (ANOVA) calculations; in particular, variables with p values less than 0.05 were designated "significant". The R² values quantify the goodness of fit of the resulting response surface model to the collected data: an R² equal to 1.0 corresponds to a perfect fit, while a value close to 0 corresponds to a poor fit. As can be seen in the table, the resulting response surface models for each response had R² values greater than 0.85, indicating a good fit for each response.

Independent Variable	Axial Low	Axial High	Factorial Low	Center	Factorial High
w/c Ratio	0.2	0.3	0.250	0.250	0.275
Sand/c Ratio	0.75	1.75	1.25	1.00	1.50
Silica Fume/Fly Ash Ratio	0.70	1.30	0.85	1.00	1.15
HRWR/c Ratio	0.0100	0.0800	0.0275	0.045	0.0625

 Table 9: Design Points for Initial Experimental Design

Despite the good fit for each response, the response surface models were found to be difficult to use to develop an optimum UHPC mix (i.e., a mixture with target properties given in Table 7), as the observed properties of the trial mixes were generally too distant from the targeted response values. Most notably, the target responses for flow and compressive strength were 11 to 13 inches and approximately 20 ksi, while the average observed responses from the initial experimental design were 7.2 and 13.2 respectively. This initial study however, provided key insight into the effects of the independent variables on all the responses for the larger region of interest.

	Independent Variables			Measured Responses				
	w/c	Sand/c	SF/FA	HRWR/c	Flow	28-Day	3	Unit Wt.
M1x ID	Ratio	Ratio	Ratio	Ratio	(inches)	fc (ksi)	Cost/yd ³	(lb/ft^3)
27 C	0.250	1.25	1.00	0.0450	8.50	18.05	\$367	140.7
25 C	0.250	1.25	1.00	0.0450	7.00	17.19	\$367	142.7
12	0.275	1.50	1.15	0.0275	4.00	11.29	\$315	139.9
14	0.275	1.00	1.15	0.0625	12.25	17.52	\$430	138.5
16	0.275	1.50	1.15	0.0625	10.25	14.48	\$380	140.5
4	0.225	1.50	1.15	0.0275	4.00	1.67	\$326	n/a
23	0.250	1.25	0.70	0.0450	7.00	14.96	\$347	141.5
17	0.200	1.25	1.00	0.0450	4.00	11.67	\$382	n/a
6	0.225	1.00	1.15	0.0625	7.25	17.36	\$448	140.9
15	0.275	1.50	0.85	0.0625	8.75	16.91	\$363	143.0
1	0.225	1.00	0.85	0.0275	4.00	6.61	\$351	n/a
26 C	0.250	1.25	1.00	0.0450	7.50	17.03	\$367	142.5
20	0.250	1.25	1.00	0.0800	9.50	16.28	\$437	141.0
19	0.250	1.25	1.00	0.0100	4.00	0.41	\$296	n/a
11	0.275	1.50	0.85	0.0275	4.00	3.36	\$299	n/a
24	0.250	1.25	1.30	0.0450	7.75	17.03	\$383	141.7
5	0.225	1.00	0.85	0.0625	11.00	17.57	\$429	142.2
8	0.225	1.50	1.15	0.0625	5.00	16.82	\$393	144.0
2	0.225	1.00	1.15	0.0275	4.00	5.57	\$371	133.6
22	0.250	1.75	1.00	0.0450	5.25	14.26	\$327	142.4
21	0.250	0.75	1.00	0.0450	12.50	18.89	\$421	138.7
13	0.275	1.00	0.85	0.0625	11.50	17.40	\$411	139.6
3	0.225	1.50	0.85	0.0275	4.00	2.66	\$310	n/a
7	0.225	1.50	0.85	0.0625	9.25	18.49	\$377	144.9
9	0.275	1.50	0.85	0.0275	4.00	8.37	\$299	137.8
10	0.275	1.00	1.15	0.0275	5.75	16.32	\$355	139.7
18	0.300	1.25	1.00	0.0450	13.00	18.16	\$354	139.3
Min.	0.200	0.75	0.70	0.0100	4.00	0.41	\$296	133.6
Max.	0.300	1.75	1.30	0.0800	13.00	18.89	\$448	144.9
Average	0.250	1.27	1.00	0.0450	7.22	13.20	\$367	140.7
CV	-	-	-	-	0.43	0.45	0.12	0.02

Table 10: Summary of Mixes and Measured Results for Initial Experimental Design

	Flow	(in)	28-Day f'c (MPa)
Variable	$R^2 = 0.85$		$R^2 = 0.95$	-
	Beta	р	Beta	р
Intercept	18.84	-	-185.35	-
w/c	-113.88	0.003	932.16 0.4	001
w/c ²	96.10	0.877	-1408.41 0.4	050
HRWR/c	206.44	0.000	2116.88 0.4	000
HRWR/c ²	-1232.45	0.341	-8237.58 0.0	000
SF/FA	-18.59	0.562	22.49 0.4	458
SF/FA ²	-9.83	0.572	-27.12 0.	156
Sand/c	3.01	0.009	26.07 0.0	003
Sand/c ²	2.46	0.693	-7.44 0.1	271
w/c*HRWR/c	819.13	0.448	-4767.87 0.0	001
w/c*SF/FA	153.90	0.231	181.08 0.	186
w/c*Sand/c	-56.26	0.466	-104.26 0.1	212
HRWR/c*SF/FA	-112.71	0.530	-272.02 0.	166
HRWR/c*Sand/c	-55.34	0.613	272.37 0.4	033
SF/FA*Sand/c	2.71	0.831	0.58 0.1	966

Table 11: Response Statistics for Initial Experimental Design

Note: shaded p-values indicate statistical significance

5.2.2 Response Surfaces

To evaluate the effects of the independent variables further, response surfaces were plotted as a function of two independent variables (with the other two variables held constant at their center point values).

Figure 6 shows the flow plotted as a function of HRWR/c ratio and w/c ratio, while Figure 7 shows crosssections of the surface at various HRWR/c ratio values. As can be seen in these figures, as expected, an increase in both HRWR/c ratio and w/c ratio resulted in an increased flow.

Shown below in Figure 8 is the flow plotted as a function of Sand/c ratio and SF/FA ratio. Figure 9 shows cross-sections of this surface for various values of SF/FA ratio. As can be seen on the surface plot, an increase in both Sand/c ratio and SF/FA ratio resulted in a decrease in flow. The reduction in flow due to an increase of Sand/c ratio is contrary to the observed behavior reported in FHWA (2013) and Wille et al. (2011), which showed no substantial reduction in workability for Sand/c ratios between 0.7 and 1.5. Further, this trend was contrary to behaviors observed in the initial trial batches carried out in the research discussed herein. This observation/result will be discussed in greater detail in the following section.

Figure 6: Flow vs. HRWR/c Ratio and w/c Ratio

Figure 7: Effect of HRWR/c Ratio and w/c Ratio on Flow

Figure 8: Flow vs. Sand/c Ratio and SF/FA Ratio

Figure 9: Effect of SF/FA Ratio and Sand/c Ratio on Flow

Figure 10 shows 28-day compressive strength plotted as a function of HRWR/c ratio and w/c ratio, and again cross-sections for this surface are shown in Figure 11. These figures show that both a reduction in HRWR/c ratio or w/c ratio generally results in a decrease in compressive strength. However, this trend is reversed at high HRWR/c and w/c ratios. These trends can be explained by the decreased workability and subsequently decreased consolidation that would result from decreasing the w/c ratio and/or amount of HRWR. This is of particular interest when considering the trend observed for decreasing strength with decreasing w/c ratio, as this trend is contrary to conventional concrete knowledge.

Shown in Figure 12 is the 28-day compressive strength surface plotted against Sand/c ratio and SF/FA ratio. The surface cross-sections for various values of SF/FA ratio are shown in Figure 13. These figures show primarily that an increase in the Sand/c ratio results in a decrease in compressive strength. This trend is again contrary to the results observed in FHWA (2013) and Wille et al. (2011), which showed only a small
reduction in compressive strength due to an increase in Sand/c ratio. This too will be discussed in the following section.

Figure 10: 28-day Compressive Strength vs. HRWR/c Ratio and w/c Ratio

Figure 11: Effect of HRWR/c Ratio and w/c Ratio on 28-day Compressive Strength

Figure 12: 28-day Compressive Strength vs. Sand/c Ratio and SF/FA Ratio

Figure 13: Effect of SF/FA Ratio and Sand/c Ratio on 28-day Compressive strength

5.2.3 Discussion

As indicated above, the Sand/c ratio was observed to have a significant effect on the workability and compressive strength of UHPC mixes. This finding was contrary to what was found in the literature review and contrary to what was observed in initial trial mixes performed by the research team. This discrepancy was investigated further by (1) comparing the sand used in the 4-variable CCD to a newly obtained sand, and (2) performing additional trial batches to further characterize the effects.

The 4-variable sand is shown in Figure 14, while the newly obtained sand is shown in Figure 15. The physical difference between these two sands can be observed in these figures, with the 4-variable sand appearing to be significantly finer than the new sand.

Figure 14: 4-Variable Sand

Figure 15: New Sand

In addition to this qualitative comparison, an additional sieve analysis (ASTM C136 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates) was performed on both sands by a third-party materials testing laboratory. The results of this analysis for the 4-variable and new sand are provided in Figure 16 and Figure 17 respectively. This analysis determined that the 4-variable sand contained 12 percent particles passing the #200 sieve compared to 0.9 percent for the new variable sand. The fineness modulus for the 4-variable and new sand was calculated to be 1.68 and 2.17, respectively. Fine sands typically have a fineness modulus between 2.2 and 2.6. This index number provides a metric to compare the average particle size of the two sands, and shows that the 4-variable sand was, in general, made up of finer particles than the new sand. The smaller average particle size of the 4-variable sand is consistent with the increased water demand of the trial mixes performed with that sand. Additionally, when attempting to perform a specific gravity analysis on the 4-variable sand, the technician reported that the sample "hydrated" at approximately 6% moisture content, suggesting that the aggregate source may have been contaminated or may contain clay particles. This finding prompted the research team to determine the absorption of the aggregate in accordance with ASTM C128 (Specific Gravity and Absorption of Fine Aggregate). The results of that test showed that the 4-variable sand had an absorption of 5.73% by weight versus 1.87% for the new sand.

Figure 16: 4-Variable Sand Sieve Analysis

Figure 17: New Sand Sieve Analysis

In addition to comparing the two sands directly, additional trial mixes were performed to more directly examine the effects that varying the Sand/c ratio and varying sand source would have on flow and compressive strength. The results of these mixes are shown in Table 12. As can be observed in this table, the sand source was isolated for two pairs of mix designs: S1-S2, and S3-S4. That is, in these mix pairs the only variable between mixes was sand source. By comparing these mix pairs, it can be observed that the 4-variable sand significantly reduced the workability of the mixes. This would again indicate that the 4-variable sand was both finer and potentially more absorbent.

Mix ID	Sand Type	w/c Ratio	Sand/c Ratio	SF/FA Ratio	HRWR/c Ratio	Flow (inches)	28-Day <i>f'c</i> (ksi)
S1	4-var	0.240	1.00	1.00	0.040	6.75	18.57
S2	New Sand	0.240	1.00	1.00	0.040	11.00	16.95
S 3	4-var	0.262	1.50	1.00	0.037	5.75	17.52
S4	New Sand	0.262	1.50	1.00	0.037	12.00	16.62
<u>S5</u>	New Sand	0.262	0.70	1.00	0.037	12.50	16.22
S 6	New Sand	0.262	1.00	1.00	0.037	12.50	16.14
S7	New Sand	0.262	1.50	1.00	0.037	12.00	18.98

Because of these findings, the research team determined that the newly obtained sand was more suitable for use in UHPC mixes. However, before moving forward with this new sand, several trial batches were performed to determine if varying Sand/c ratio with this sand would have any impact on workability and/or compressive strength. The results of these trial batches (S5-S7) are provided in Table 12. As can be observed, Sand/c ratio had nearly no effect on flow, and only a moderate effect on strength. A finding that is consistent with previous research and initial trial batches.

It should be noted, that while both sands were packaged by QUICKCRETE and obtained at Lowes in Bozeman, they were acquired at different times. Prior to commencing this project, it was confirmed that the masonry sand carried by Lowes in Bozeman originates from the QUICKCRETE plant in Billings, MT. Upon further investigation, the research team believes that the sand used in the 4-variable CCD most likely came from another source, as it appears to have been transferred from another store.

These findings highlight the importance of selecting an appropriate sand for use in UHPC mixes. The remainder of this research was conducted using this newly obtained sand, and care will be given to confirm the consistency of the sand as the research progresses.

5.3 Follow-on 3-Variable CCD

Upon completion of the initial 4-variable CCD, a second CCD analysis was carried out with a modified region of interest, a more appropriate/representative sand, and a fixed Sand/c ratio of 1.4. This Sand/c ratio is based on suggestions made in Wille et al. (2011) and FHWA (2013) to provide adequate strength and protection against shrinkage, and was shown in initial trial batches to be adequate. This follow-on CCD produced mixtures with properties more consistent with target responses the research team desired for UHPC.

5.3.1 Experimental Design and Measured Responses

The design points for this CCD are provided in Table 13. A total of 16 trial batches, which consisted of eight factorial runs, six one-factor-at-a-time runs at the axial points, and two center point runs. The mix parameters for these 16 trial batches are provided in Table 14, along with the resulting measured responses for each mix. Summary statistics for these mixes are provided in Table 15, with the statistically significant variables shaded. The responses used in this experimental design were: flow, 28-day compressive strength, 56-day compressive strength, and cost. 56-day compressive strength was added as a response to further evaluate the strength gain of the UHPC mixtures over time, as it was believed that the high level of supplementary cementitious materials was retarding the strength gains of the UHPC mixes in this research.

Table 15: Design Fonts for Fonow-on Experimental Design							
Independent Variable	Axial Low	Axial High	Factorial Low	Center	Factorial High		
w/c Ratio	0.206	0.274	0.220	0.240	0.260		
Silica Fume/Fly Ash Ratio	0.330	1.17	0.50	0.75	1.00		
HRWR/c Ratio	0.011364	0.078636	0.02	0.045	0.06		

Table 13: Design Points for Follow-on Experimental Design

Table 14:	Summary of Mixe	s and Measured	Results for Follow-	On Experimen	tal Design
	Indeper	ndent Variables	Measured Res	ponses	

	Indep	endent Va	ariables	I	Measured	Response	s
Mix ID	w/c Ratio	SF/FA Ratio	HRWR/c Ratio	Flow (inches)	28-Day	56-Day fc (ksi)	Cost/yd ³
	14410	14110	14110	(menes)) e (1151)) e (1151)	
3-12	0.240	0.75	0.079	12.00	17.4	17.4	\$405.69
3-9	0.206	0.75	0.045	9.50	21.1	21.1	\$349.33
3-11	0.240	0.75	0.011	4.00	4.3	8.0	\$274.65
3-13	0.240	0.33	0.045	12.50	20.2	20.5	\$299.91
3-8	0.260	1.00	0.060	12.75	19.7	21.3	\$380.26
3-3	0.220	0.50	0.060	10.50	17.3	19.7	\$353.49
3-14	0.240	1.17	0.045	11.25	18.3	20.2	\$365.65
3-15 C	0.240	0.75	0.045	13.00	19.5	20.1	\$340.61
3-6	0.260	1.00	0.020	4.00	12.8	14.9	\$303.33
3-16 C	0.240	0.75	0.045	13.00	17.9	18.8	\$340.61
3-2	0.220	1.00	0.020	4.00	16.2	16.2	\$312.52
3-10	0.274	0.75	0.045	13.50	17.8	19.1	\$332.32
3-4	0.220	1.00	0.060	10.50	18.0	18.6	\$391.69
3-5	0.260	0.50	0.020	4.00	15.8	15.8	\$266.20
3-7	0.260	0.50	0.060	13.50	18.5	20.1	\$343.21
3-1	0.220	0.50	0.020	4.00	14.1	15.4	\$274.24
Min.	0.206	0.330	0.011	4.00	4.3	8.0	\$266.20
Max.	0.274	1.170	0.079	13.50	21.1	21.3	\$405.69
Average	0.240	0.750	0.043	9.50	16.8	18.0	\$333.36
CV	-	-	-	0.42	0.3	0.2	0.13

	Flow	(in)	7-Day f	c (ksi)	28-Day f	'c (ksi)	56-Day f	c (ksi)
Variable	$\mathbf{P}^2 = \mathbf{P}^2$		$\frac{-Day f}{D^2 - f}$	$\frac{-Dayjc(Rsi)}{D^2 - 0.02}$		$\frac{20-Day f c}{D}$		
variable	Reta	<u>0.90</u>	 Reta	<u>n</u>	<u> </u>	n n	<u> </u>	<u>0.90</u> n
Intercent	129.79		12 10	P	62.57	0.000	04.82	P
intercept	-136.76	-	-13.10	-	02.37	0.000	94.62	-
w/c	1078.03	0.065	50.55	0.899	-455.85	0.529	-643.80	0.783
w/c ²	-2277.38	0.073	102.38	0.944	998.30	0.561	1221.25	0.392
HRWR/c	225.66	0.000	413.28	0.004	172.40	0.003	281.55	0.001
$HRWR/c^{2}$	-5415.42	0.002	-4170.38	0.021	-4383.73	0.032	-4793.73	0.010
Sand/c	24.05	0.602	30.52	0.658	16.58	0.744	-18.06	0.935
Sand/c ²	-12.92	0.109	0.61	0.949	5.39	0.629	9.46	0.317
w/c*HRWR/c	1731.61	0.179	-38.89	0.980	1114.51	0.550	997.55	0.514
w/c*Sand/c	-18.75	0.846	-135.00	0.313	-115.00	0.451	15.00	0.902
HRWR/c*San								
d/c	-23.89	0.802	46.01	0.717	54.31	0.713	3.07	0.980

Table 15: Response Statistics for Follow-on Experimental Design

Note: shaded p-values indicate statistical significance

From this 3-variable CCD, it was determined that only HRWR had a statistically significant effect on the flow and compressive strength of UHPC over the targeted range. This finding was somewhat unexpected, as w/c ratio is known to significantly affect workability and strength in conventional concrete mixtures.

5.3.2 Response Surfaces

As was done in the 4-variable CCD, the resulting response surfaces are plotted as a function of two independent variables below. In these figures, the third variable was held constant at its center point value.

Shown in Figure 18 is the 56-day compressive strength plotted against SF/FA ratio and w/c ratio. As can be observed in this figure, SF/FA ratio and w/c ratio had little effect on the compressive strength within the region of interest of this study, and much of the surface sits above the target compressive strength of 20 ksi.

Figure 18: 56-day Compressive Strength vs. SF/FA Ratio and w/c Ratio

Figure 19 shows 56-day compressive strength plotted as a function of HRWR/c ratio and SF/FA ratio. Like the trend observed in Figure 18, SF/FA ratio appears to have a relatively low impact on the compressive strength of the UHPC mixture. It can also be observed in this figure that HRWR/c ratio has a significant effect on compressive strength at values above 0.06. This trend is also observed for HRWR/c ratios less

than 0.04. This behavior might be expected, as HRWR/c ratio directly affects the workability of the mix, which subsequently affects consolidation.

56-day compressive strength is plotted as a function of HRWR/c ratio and w/c ratio in Figure 20. As can be observed, w/c had little impact on compressive strength, while HRWR/c ratio values below 0.04 can be observed to have a significant effect (decreasing strength with decrease in HRWR/c ratio).

Figure 19: 56-day Compressive Strength vs. HRWR/c Ratio and SF/FA Ratio

Figure 20: 56-day Compressive Strength vs. HRWR/c Ratio and w/c Ratio

Figure 21 shows the flow surface plotted as a function of SF/FA ratio and w/c ratio. SF/FA ratio can be observed to have little impact on the flow of the UHPC mixture within the range examined, while an increase w/c ratio generally resulted in an increase in flow (consistent with conventional understanding).

Figure 21: Flow vs. SF/FA Ratio and w/c Ratio

Flow is plotted as a function of HRWR/c ratio and SF/FA ratio in Figure 22. As previously observed, SF/FA ratio had little impact on UHPC flow within the range examined. However, HRWR/c ratio values below 0.04 had a significant impact on the workability of the mix, with decreasing HRWR/c ratio resulting in decreased flow, as might be expected. A reduction in flow was also observed for HRWR/c ratios greater than 0.06.

Figure 23 shows flow plotted as a function of HRWR/c ratio and w/c ratio. As can be seen in the figure, both of these independent variables had a significant impact on the workability of the mixture. A HRWR/c ratio was observed to have a substantial effect on flow at values greater than 0.06 and less than 0.04.

Figure 22: Flow vs. HRWR/c Ratio and SF/FA Ratio

Figure 23: Flow vs. HRWR/c Ratio and w/c Ratio

The 7-, 28-, and 56-day compressive strength surfaces (bottom, middle, and top respectively) are plotted vs. the various concrete mix parameters in Figure 24, Figure 25, and Figure 26 to provide a general comparison between the surfaces and to investigate whether or not predicted effects vary over time. Generally speaking, the observed trends do not appear to vary over time, with the exception of the trends observed in Figure 24, where the effects of SF/FA ratio and w/c ratio observed at 7-days vary from those observed at 28 and 56 days. This variation may be associated with the high levels of SCMs used in these mixes, and the effects that these SCMs may be having on strength gain.

Figure 24: Compressive Strength vs. SF/FA Ratio and w/c Ratio

Figure 25: Compressive Strength vs. HRWR/c Ratio and SF/FA Ratio

Figure 26: Compressive Strength vs. HRWR/c Ratio and w/c Ratio

Figure 27 shows cost response surface as a function of HRWR/c ratio and SF/FA ratio. Silica fume and HRWR are the most expensive components (by weight) used in these UHPC mixes. It should be noted that the cost response has a direct relationship to the mix parameters, and therefore has a perfect fit ($R^2 = 1.0$). This response was used as a mechanism for developing low-cost economical mixes, as will be discussed in the following chapter.

Figure 27: Cost vs. HRWR/c Ratio and SF/FA Ratio

5.3.3 Discussion

The response surfaces generated from this 3-variable CCD fit the data well, and were determined to be appropriate for optimization, as target responses were achievable within or near the prescribed region of interest (no extrapolation). The process used and the results of this optimization are discussed in the following chapter.

6 OPTIMIZATION, MODIFICATION, AND SELECTION OF MIX

In the previous chapter, response surfaces were developed for flow, compressive strength, and cost, as functions of the independent variables: w/c ratio, HRWR/c ratio, and SF/FA ratio. In this chapter, these surfaces are used to obtain mixes that meet target response parameters. Specifically, UHPC mixes with flows of 8-11 inches, 56-day compressive strengths of 20-21 ksi, and costs of \$300-350 were targeted.

To obtain targeted results for numerous responses, RSM analyses often employ the use of desirability functions. These functions allow the analyst to prioritize the response values during the optimization procedure. A separate desirability function is created for each response, and then the geometric mean of the desirability functions is calculated to obtain a single optimized composite response (Myers & Montgomery, 2002).

A simpler and more robust process was used in this research to obtain mixes that met the desired response parameters. The response surface equations were simultaneously solved for the unknown independent variables for a targeted set of response values. For example, the three response surface equations for the follow-on 3-variable CCD (flow, compressive strength, and cost) were solved for the three independent variables (w/c ratio, HRWR/c ratio, and SF/FA ratio) to yield the specified response values. The developed response surfaces are nonlinear, and thus it should be noted that multiple solutions for the targeted values might exist. During the analyses, only solutions that fell within or near the designated region of interest were considered to be valid. Additionally, in cases where an exact solution does not exist, this methodology does not allow the analyst to compromise between the target responses, whereas the use of desirability functions allows for this compromise.

6.1 Mix Development and Trial Mixes

The second approach described above was used to develop several mixes with similar targeted response parameters. The first mix (3M1) was developed by targeting specified values for flow (11 inches), 56-day compressive strength (20 ksi), and material cost (\$300 per cubic yard). 3M2 and 3M3 were developed by targeting the same flow and cost (11 inches and \$300, respectively) but a higher 56-day compressive strength of 21 ksi. A fourth mix (3M4) was developed using a higher targeted material cost of \$350 per cubic yard while still targeting a flow of 11 inches and 56-day compressive strength of 20 ksi. It should be noted that these trial mixes used the same Sand/c ratio of 1.4 that was used in the follow-on experimental design. Table 16 shows a summary of the 4 mixes resulting from these targeted responses. Included in this table are the predicted responses and their respective 95% confidence intervals (CI).

The low target cost of \$300/cubic yard used in 3M1-3M3 resulted in mixes with fairly low silica fume content. In mix 3M4, the cost was increased to \$350/cubic yard, which yielded a mix with significantly more silica fume. This result was specifically targeted, as silica fume is known to reduce porosity and thus increase durability. It should also be noted that all four of these mixes fall just outside of the designated region of interest used in the 3-variable CCD. 3M1, 3M2, and 3M3 have SF/FA ratios that fall just outside the factorial low and factorial high points shown previously in Table 13. Similarly, 3M3 and 3M4 have w/c ratios that again fall just outside of the factorial points. The relatively large bounds on the 95% confidence intervals provided in Table 16 can be attributed to this fact.

Variable/Response	3М	1	3M	2	3M3		3M4		
w/c Ratio	0.23	6	0.2.	37	0.2	74	0.216		
SF/FA Ratio	0.3	8	0.3	0.31		0.43		0.68	
HRWR/c Ratio	0.04	2	0.04	46	0.0	0.043 0.049		49	
	Predicted (95% CI)	Measured	Predicted (95% CI)	Measured	Predicted (95% CI)	Measured	Predicted (95% CI)	Measured	
Flow (inches)	11.00 (8.9 to 13.1)	12.00	11.00 (8.2 to 13.8)	11.25	11.00 (7.0 to 15.0)	12.50	11.0 (9.2 to 12.9)	10.50	
7-day <i>f'c</i> (ksi)	14.4 (11.6 to 17.3)	13.0	14.6 (10.9 to 18.3)	14.1	16.3 (11.0 to 21.6)	14.4	15.2 (12.7 to 17.6)	11.2	
28-day f'c (ksi)	18.7 (15.5 to 22.0)	16.2	19.4 (15.1 to 23.7)	18.2	20.7 (14.6 to 26.9)	18.2	19.1 (16.2 to 22.0)	15.1	
56-day <i>f'c</i> (ksi)	20.0 (17.3 to 22.7)	16.9	21.0 (17.5 to 24.5)	18.2	21.0 (15.9 to 26.0)	20.4	20.0 (17.6 to 22.3)	18.6	

Table 16:	Optimized	Mix	Summary	and	Results
	1				

To validate the parameters obtained in Table 16 for the various mixes, and to visualize these solutions, the flow, cost, and 28-day compressive strength response surface contours are overlaid in Figure 28 through Figure 31. In these figures, the SF/FA ratios are set at their optimum values. The figures indicate the target responses with solid red lines, and the intersection of these contours occurs at the optimum w/c ratio and HRWR/c ratios.

Figure 28: 3M1 Optimization Contour Lines

Figure 29: 3M2 Optimization Contour Lines

Figure 30: 3M3 Optimization Contour Lines

Figure 31: 3M4 Optimization Contour Lines

After development, the aforementioned mixes were carried out in a laboratory setting to verify their performance against the predicted values, and also to validate the effectiveness of this mix design methodology. Included in Table 16 are the measured response obtained from these mixes. As can be observed in this table, 3M1 had a measured flow within 1.0 inch of the predicted value, and had measured 7-, 28-, and 56-day compressive strengths within 10, 14, and 15 percent of the predicted strengths, respectively. 3M2 had a measured flow within 0.25 inches of the predicted value, while the 7-, 28-, and 56-day strengths were within 4, 7, and 13 percent of the respective predicted values. 3M3 had a measured flow within 1.5 inches of the predicted flow, and measured 7-, 28-, and 56-day compressive strengths within 12, 12, and 3 percent of their predicted values. 3M4 had a measured flow within 0.5 inches of the predicted values. and a 7-, 28-, and 56-day compressive strength within 26, 21, and 7 percent of the predicted values.

Overall, the response surface models developed in this study reasonably predicted the responses and served as an efficient tool for developing mix designs. All measured responses fell within the 95% confidence interval, with the exception of the 56-day compressive strength of 3M1, and the 7-day and 28-day compressive strength of 3M4, which are slightly below the lower bounds. However, it is worth noting that all of the measured compressive strengths were lower than the predicted values. It should be noted that inaccuracies in the statistical model as well as the inherent variability in standard concrete sampling and testing methods are responsible for the discrepancy between the measured and predicted responses in these mixes.

6.2 Scaled-Up Trial Mixes, Resultant Modifications, and Selection of Mix

The mixes discussed above were evaluated further by carrying out scaled-up 1.5-ft³ batches using conventional concrete/mortar mixing equipment. It should be restated that all of the mixes conducted thus

far in the research were 0.2 ft^3 , and were mixed using a Hobart bench-top mixer (Figure 2). Several 1.5- ft^3 mixes were attempted using a 7-ft³ fixed-vane rotating drum mixer, and it was determined that this type of mixer was not appropriate for the UHPC mixes developed in this research; the mixing action provided by this mixer did not adequately distribute the water and water reducer, which resulted in a very stiff, nonflowing mixes. The 1.5-ft³ mixes were then attempted in a standard fixed-drum rotating-vane mortar mixer, and it was determined that this type of mixer provided adequate mixing action/energy to properly mix the UHPC mixes developed in this research. However, it was observed that the hardened concrete properties of these scaled-up mixes varied from what was observed for the 0.2-ft³ batches. Of particular importance, the compressive strengths and flows of these scaled-up mixes were less than what was observed for the small-scale mixes.

To address the issues discussed above, several modified mixes were carried out at this larger scale, and it was determined that the center point mix used in the 3-variable CCD (mixes 3-15C and 3-16C) performed the best with respect to desired responses at this scale. Because of this, this mix was chosen for further evaluation with the mechanical and durability tests (discussed in the following chapters). For convenience, the mix proportions for this mix are repeated in Table 17. It should also be noted that the effect of steel fibers on the performance of this mix was investigated, and it was determined that the inclusion of fibers (2 percent by volume) did not significantly affect the flow or ultimate compressive strength. That being said, the steel fibers increased the tensile capacity of the concrete, and reduced the variability observed in the compressive strengths. The projected cost of this mix (sans freight costs) was estimated at \$350/yd³ without fibers, and $560/ \text{yd}^3$ with steel fibers.

Table	e 17: Selected-UHP	C Mix Paramete	ers
w/c Ratio	Sand/c Ratio	SF/FA Ratio	HRWR/c Ratio
0.240	1.40	0.75	0.045

In addition to the observed variability with batch size, a significant amount of variability was observed between repetitions of identical batches. A study was then carried out to determine the cause of this variability between batches, and based on this study it was determined that much of this variability could be reduced by including steel fibers, and modifying the curing procedure and the cylinder preparation technique. Specifically, newly cast cylinders were capped with plastic wrap rather than conventional plastic cylinder mold caps, which prevented the loss of moisture at the surface of these cylinders. Also, based on findings from the FHWA (Graybeal, 2006a), the concrete cylinders were left in their molds for 48 hours before being stripped and placed in the cure room (rather than 24 hours). In regards to hardened concrete cylinder preparation, the top half inch of compressive cylinders were cut off with a tile saw prior to grinding, which removed the portion of concrete where entrapped air was prevalent.

7 MECHANICAL PROPERTIES OF UHPC MIX

The concrete mixture developed in the previous chapter was evaluated with a suite of mechanical and durability tests to assess its potential for use in construction projects in Montana. This chapter reports on the results of the mechanical tests, while the following chapter reports the results of the durability tests. A summary of the mechanical properties tested in this research is provided in Table 18. It should be noted that multiple batches of the UHPC mix was required to complete all of these tests, and although some variation was observed between mixes, this variation was not substantial.

Material Property	ASTM Test Method
Compressive Strength	C39
Elastic Modulus	C469
Modulus of Rupture	C78
Splitting Tensile Strength	C496
Shrinkage	C512

i abie 10. Micchanical i i oper de	Table	18:	Mechanical	Properties
------------------------------------	-------	-----	------------	------------

7.1 Unconfined Compressive Strength

An often cited and important property of hardened concrete is its unconfined compressive strength, which can also be indicative of many other material properties. Table 19 and Figure 32 provide the average compressive strength profile as a function of time for the UHPC concrete over 56 days. These strengths were determined in accordance with ASTM C39, and were calculated as the averages of two 3-by-6-inch test cylinders. As can be seen in the table and figure, as, expected, the concrete continued to gain strength over time, reaching a strength of just over 20 ksi at 56 days.

Table 19: U	nconfined	Compressive	Strength
-------------	-----------	-------------	----------

Age (days)	f'c (ksi)
7	16.4
28	19.2
56	20.1

Figure 32: Unconfined Compressive Strength vs. Time

7.2 Elastic Modulus

The elastic modulus of the concrete was determined as the average of two tests on 4-by-8-inch cylinders, tested in accordance to ASTM C469. The results for each concrete are provided in Table 20 and Figure 33. Also included in the table, for comparison, are the predicted values of the modulus according to ACI 318: $E_c = w_c^{1.5} 33\sqrt{f'_c}$. In this equation, E_c is the elastic modulus in psi, w_c is the unit weight of the concrete in pcf (153 pcf for UHPC in this study), and f'_c is the compressive strength of the concrete in psi.

Generally speaking, the elastic modulus of the concrete increased with time, as one would expect with increasing compressive strength, reaching a value of approximately 6,800 ksi at 56 days. With respect to the ACI predicted moduli, the tested moduli were significantly less than what is predicted by this methodology, with a ratio of measured to predicted moduli between 0.73 and 0.77. This result is consistent with what can be observed in the data collected by the FHWA (Graybeal, 2006a) study on the characterization of UHPC material properties, and may be associated with the high paste content and lack of coarse aggregates in the UHPC mixtures.

Age (days)	f'c (ksi)	E _{Meas} (ksi)	E Pred (ksi)	<u>E Meas</u> E Pred
7	16.4	5977	7993	0.75
28	19.2	6289	8643	0.73
56	20.1	6787	8847	0.77

Table 20: Elastic Modulus

Figure 33: Elastic Modulus

7.3 Flexural Tensile Strength

The flexural tensile strength of the concrete at 28 days was calculated as the average of two 20-by-6-by-6 inch prisms tested according to ASTM C78. The results of these tests are provided in Table 21. The steel fibers included in the UHPC mix allow the flexural specimens to continue to carry load beyond the formation of an initial crack; therefore, the measured ultimate load from these tests do not provide a good measure for the cracking capacity of the concrete. The overall force-deformation response from the flexural tests can be used to determine the stress at the onset of cracking. Specifically, initial cracking was determined from the force-deformation response by finding the first point at which there is a sudden reduction in applied load and a distinct reduction in stiffness. This point was clearly defined in the two specimens tested in this research. Included Table 21 are the stresses calculated from the observed load at initial cracking and ultimate capacity, along with the tensile strengths predicted by the ACI equation for modulus of rupture: $f_r = 7.5\sqrt{f'_c}$ (f_r and f'_c in psi). It should be noted that the tensile stress from applied load as ultimate load is for comparative purposes, as the equation used to calculate this stress from applied load assumes no cracking and linear-elastic behavior, which is not the case at ultimate load (Graybeal, 2006a).

As can be observed in the table, the UHPC concrete has significant tensile strength, with an average stress at initial cracking of nearly 2 ksi, approximately 90 percent greater than what would be expected of a conventional non-fiber reinforced concrete with similar compressive strength. The stress calculated at ultimate load is significantly higher than the load at initial cracking (approximately 70 percent). Again, these findings are consistent with previous research conducted by the FHWA (Graybeal, 2006a).

Stress at Initial Crack	Stress at Ultimate	Predicted	Meas/Predicted	Meas/Predicted
(ksi)	(ksi)	(ksi)	Initial	Ultimate
1.98	3.39	1.05	1.89	3.23

Table 21: Flexural Tensile Strength

7.4 Splitting Tensile Strength

The splitting tensile strength of the UHPC mix was tested by applying a diametral compressive force along the length of 6-by-12 inch concrete cylinders according to ASTM C496. As discussed above for flexural tensile strength, the steel fibers included in this mix provided for increased strength beyond the formation of an initial crack, and therefore the ultimate load observed in these tests are not a good measure for the cracking strength of the concrete. That being said, the test setup used for these tests did not allow for the determination of the onset of initial cracks, as was done for the flexural tests. Therefore, only the average stresses calculated from the ultimate loads are provided in Table 22. Additionally, the mechanics equations used to calculate these stresses again assume uncracked linear-elastic behavior, which is not the case at ultimate load. Because of these factors, the results here are provided for comparative purposes only. Also, for comparison, the predicted strengths calculated according to ACI 318 as $f_{ct} = 6.7\sqrt{f'_c}$ (f_{ct} and f'_c in psi) are included in this table.

Referring to Figure 34, as expected, the concrete gained strength between 7 and 28 days, but experienced a slight decrease in strength between 28 and 56 days. It should be noted that the 28-day stress at ultimate load from the split cylinder tests is close to that observed from the flexural tests discussed above (3.30 ksi vs 3.39 ksi). In regards to the applicability of the ACI estimate for tensile capacity based on compressive strength, the observed tensile strength is significantly greater than what is predicted the ACI methodology, as expected since this methodology is meant for non-fiber-reinforced conventional concrete.

Age (days)	Stress at Ultimate (ksi)	Predicted at Initial Crack (ksi)	Meas/Predicted
7	2.52	0.96	2.62
28	3.30	1.04	3.18
56	2.25	1.06	3.06

Table 22: Splitting Tensile Strength

Figure 34: Splitting Tensile Strength vs. Time

7.5 Shrinkage

Shrinkage strains were measured from two 6-by-12 inch cylinders in substantial accordance with the procedures outlined in ASTM C512. Although this test methodology is not intended for strictly measuring shrinkage, it provides a simple methodology of measuring shrinkage strain in concrete specimens. It should be noted, that variations in humidity would affect these results, and this was not controlled in this experiment. That being said, these results provide a benchmark for expected shrinkage under humidity conditions typically found in Montana. Each cylinder was equipped with a vibrating wire strain gauges to monitor deflections (Geokon Model 4000). After moist curing for 28 days, the cylinders were placed in the laboratory at room temperature, where they remained for the duration of the test.

The average measured shrinkage strains over 123 days are provided in Figure 35. As can be seen in this figure, the concrete continues to shrink over time, with the rate of shrinkage decreasing with time.

Figure 35: Average Shrinkage Strain vs. Time

8 DURABILITY OF UHPC MIX

In this chapter, the durability of the UHPC mix developed in this study is evaluated. The tests used to evaluate the durability are summarized in Table 23.

Durability Property	ASTM Test Method
Abrasion	C944
Absorption	C642
Alkali Silica Reactivity	C1567
Chloride Permeability	C1202
Freeze-Thaw	C666
Scaling	C672

Table	23:	Dura	bility	Prope	rties
				- 1	

8.1 Abrasion

The abrasion properties of the UHPC mix design was determined according to ASTM C944. Two specimens were abraded using a 22-pound load applied to a 3¹/₄-inch rotating cutter. The cutter was rotated at approximately 200 rpm for a duration of 2 minutes. The resulting change in mass for the two specimens is provided in Table 24. As can be observed in this table, both specimens experienced very little mass loss with the 22-pound load (11.3 and 10.9 grams). It should also be noted that both specimens had wear depths less than 1.0 mm. For reference, concretes with wear depths of less than 1.0 mm meet FHWA standards for Grade 2 high performance structural concrete (Goodspeed et al., 2013). Both specimens warranted a further investigation using a doubled load (44 pounds), and again, there was very little mass loss and wear depth for either sample.

 Table 24: Abrasion tests results

	Mass Loss		
Specimen #	22 Pound (g)	44 Pound (g)	
1	11.3	23.4	
2	10.9	31.5	

8.2 Absorption

Absorption is one of several methods used to gauge the permeability of concrete. Permeability can serve as an indicator of performance. For example, concrete with low permeability typically has an increased resistance to freeze-thaw cycles and to infiltration of deleterious substances. For this research, absorption was determined with two 3-by-6 inch cylinders in accordance with ASTM C642, which estimates the total void volume of the test samples.

As expected the UHPC concrete was found to have very little pore space. Specifically, the two UHPC specimens were found to have void volumes of 1.36 and 1.304 percent. Relative to conventional Portland cement concrete pavements, a total void volume less than or equal to 12 percent will typically result in a durable concrete with respect to permeability (Fick, 2008).

8.3 Alkali Silica Reactivity

Alkali-silica reactivity of the UHPC concrete was tested according to ASTM C1567. This method monitors the expansion of mortar bars that are submerged in an alkaline solution at 176°F for 14 days. According to this specification, for conventional concretes, expansion of less than 0.10 percent after 14 days of exposure is indicative of innocuous behavior, while expansion of more than 0.20 percent is indicative of potentially deleterious expansions. It should be noted that the mix design parameters (e.g., w/cm ratio and paste content) and gradations prescribed by ASTM C1567 were not explicitly followed in this research, as these parameters were not appropriate for UHPC. For this research, no modifications were made to the UHPC mix design, and steel fibers were included. Because the mix design varies from what is specified in ASTM C1567, the specified thresholds in this test and this test in general may not be appropriate for evaluating the ASR potential of this mix. Further, unintended curing may take place during the testing process, and would subsequently affect the results (Graybeal & Tanesi, 2007).

Despite the above-mentioned issues with this testing methodology, ASR is not expected to be an issue with UHPC due to its low permeability, and high silica fume and fly ash contents (Graybeal & Tanesi, 2007). The average expansions of four mortar bars are plotted versus time in Figure 36. As can be observed, and as expected, the mortar bars expanded very little during this testing.

Figure 36: Average ASR Expansion vs Time

8.4 Chloride Permeability

ASTM C1202/AASHTO T277 was used to determine the chloride permeability resistance of the UHPC concrete. This test methodology measures the coulombs passed through a vacuum saturated 4-inch diameter by 2-inch thick cylinder exposed to a current for 6 hours. It should be noted that the concrete mix used in this test included steel fibers; however, because these fibers are not interconnected throughout the concrete matrix they are not expected to affect the results of this test. Two specimens were tested for this research, and the results are reported in Table 25. As can be observed in this table, and as expected, this concrete is not susceptible to chloride ion penetration, with an average of 70 coulombs passed and a rating

of Negligible. For reference, a concrete determined to have a low susceptibility to chloride ion penetration would be in the range of 1,000-2,000 coulombs.

Mix	Age at Test (days)	Avg. Adj. Charge Passed (coulombs)	Chloride Ion Penetrability
Specimen 1	56	75	Negligible
Specimen 2	56	56	Negligible

Table 25: Chloride permeability results

8.5 Freeze-Thaw Resistance

A primary mechanism of physical deterioration for unprotected concrete is prolonged exposure to cycles of freezing and thawing in the presence of moisture. This damage, which can occur at both a microscopic and macroscopic level, accumulates over time, eventually contributing to the failure of the concrete. The freezing-and-thawing resistance of the UHPC was quantified according to ASTM C666. This test method consists of subjecting concrete specimens to multiple freezing-and-thawing cycles while fully saturated. Mass loss and change in dynamic modulus are monitored as a function of accumulated freezing-and-thawing cycles. As may be obvious, the degree of damage sustained by the concrete due to microcracking and macrocracking under freezing-and-thawing action is reflected by its attendant loss of mass and stiffness, where material stiffness can be nondestructively measured in terms of dynamic modulus. The relative dynamic moduli were calculated from fundamental transverse frequency measurements (ASTM C215). The durability factor, *DF*, is used as one of the indicators of performance. The durability factor is defined as: DF = PN/M, where *P* is the relative dynamic modulus, and *N* and *M*, in this case, are the total number of cycles at which the exposure is to be terminated (300).

Three 3-by-4-by-16 inch rectangular prisms were cast from the UHPC mix, and exposed to several freezethaw cycles per day for 300 cycles. The results from this test are reported in Table 26, while the relative dynamic moduli for the three specimens are plotted in Figure 37 as a function of cycles.

Specimen #	# of Cycles	Mass Change (%)	Durability Factor
1	300	-0.089	103.2
2	300	-0.096	103.5
3	300	-0.066	103.4

Table 26: Freeze-thaw durability results

Figure 37: Relative Dynamic Modulus vs. Cycles

All three specimens performed exceptionally well under prolonged exposure to freeze-thaw cycles, with all three specimens having nearly no mass loss, and durability factors greater than 103. For reference, a value of 100 corresponds to no loss of stiffness, with decreasing values corresponding to increasing deterioration; a relative dynamic modulus of 80% or greater after 300 cycles is often assumed to indicate good freezing-and-thawing resistance. A durability factor greater than 100 (as is the case here) would indicate that the concrete not only did not experience any deterioration, the concrete actually gained stiffness during exposure. This gained stiffness is most likely due to continued hydration of the concrete that would take place during thaw cycles. The good freeze-thaw resistance of this concrete is most likely due to its low permeability and high strength.

8.6 Scaling

The resistance to scaling resulting from deicing chemicals was determined from one 7.5-by-12 inch rectangular prism following the methods outlined in ASTM C672. The specimen was immersed in a 0.04 g/ml solution of CaCl2 for 25 freeze-thaw cycles and a visual evaluation of the scaling was conducted every 5 cycles. At each evaluation stage, a numerical rating is assigned to the specimen. This rating is prescribed by ASTM; it ranges from 0, or "no scaling", up to 5, which corresponds to "severe scaling" (where coarse aggregate is visible over the entire surface). After 50 cycles, there was no visible deterioration of the specimen (Figure 38), resulting in a 0 rating at every stage. As was the case with freeze-thaw resistance, this concrete's resistance to scaling is most likely associated with its low permeability and high compressive and tensile strengths.

0 Cycles

9 SUMMARY AND CONCLUSIONS

The primary objective of this research was to develop an economical, non-proprietary UHPC mix with materials readily available in Montana. In this research, suitable materials for use in UHPC were first obtained and characterized. Initial trial mixes were then prepared and tested to determine a suitable range of mix parameters. A 4-variable central composite design (CCD) was then carried out to characterize the effects of materials and mix parameters on UHPC performance. A follow-on 3-variable CCD was then carried out using a more appropriate sand and a refined region of interest determined from the results of the 4-variable CCD. Results of the 3-variable CCD were then used to determine optimized mixes that met specified performance criteria. The effect of batch size and mixing/curing procedure was then investigated with these optimized mixes. Based on this study, a suitable protocol was established, and a modified mix design was selected for further evaluation. The mechanical properties and durability of this selected UHPC mix was then evaluated through a suite of ASTM tests.

Based on this investigation, the following conclusions can be made.

- Suitable materials for use in UHPC can be easily obtained in the state of Montana. Specifically, a Type I/II cement from the CRH plant in Trident, MT was used throughout this study, which proved to be acceptable for use in UHPC. Montana-sourced fine sand that meets standard masonry sand specifications worked well in mixes performed during this study, and has a particle size distribution similar to distributions recommended for SCC and UHPC mix designs. During this study, it was determined that UHPC performance can be very sensitive to the physical makeup of the sand, and potential contaminants within it. Therefore, care should be taken when selecting an appropriate sand for use in this application. A class F fly ash from the Coal Creek Station near Underwood, ND worked well as a SCM filler in the UHPC mixes. It was determined during this study that class C fly ashes may not be suitable for use in UHPC due to the self-cementitious nature of this ash, which resulted in greatly accelerated set times, and reduced workability. The silica fume and HRWR were the most expensive components used in the UHPC mixes developed in this research, and were the most difficult materials to obtain in Montana. The silica fume was obtained from BASF, and the HRWR was obtained from CHRYSO, Inc., both of which can be obtained in bulk from these companies.
- The initial 4-variable CCD proved to be an efficient tool for characterizing the effect of the various concrete constituents on the performance of UHPC. The resulting surfaces fit the data well, with R² values of at least 0.85 for all responses. Despite the good fit, the response surfaces obtained from this CCD were not suitable for optimization due to the fact that extrapolation was required to obtain the target responses. That being said, this analysis revealed an unexpected effect of Sand/c ratio on flow and compressive strength. This trend was later attributed to the physical nature and potential contamination of the sand used in this 4-variable CCD. This analysis also proved beneficial in determining the refined region of interest to be used in the follow-on 3-variable CCD.
- The follow-on 3-variable CCD also proved to be a very useful tool for characterizing the effects of the various concrete constituents on the performance of UHPC, and also proved useful for optimization. This CCD was carried out with a more appropriate sand over a refined region of interest, which was more suitable for optimizing mixes to meet the desired target responses. In this CCD, the resulting response surfaces again fit the data well, with R² values of at least 0.83 for all responses. In regards to optimization, four mixes were obtained to meet the desired performance

criteria: \$300-\$350 cost (without fibers), 8-11 inch flow, and 20-21 ksi strength at 56 days. The measured responses from these mixes were all within 12 percent of the predicted responses, and all easily within the 95% confidence interval.

- Batch size and mixing method were observed to have a significant effect on resultant plastic and hardened concrete properties. It was determined that a conventional fixed-vane rotating drum concrete mixer was not adequate for mixing these UHPC mixes (at least not at the batch sizes used in this research); however, a conventional fixed-drum rotating-fin mortar mixer was found to provide adequate mixing action/energy. In addition to the observed variability with batch size, a significant amount of variability was observed between repetitions of identical batches. It was determined that much of this variability could be reduced by including steel fibers, and modifying the curing procedure and the cylinder preparation technique.
- The mechanical and durability tests performed on the selected UHPC mix demonstrated the exceptional mechanical properties and durability of this material.
- Overall this research demonstrated that self-consolidating, non-proprietary UHPC mixes can be made economically (less than \$1,000/yd³) with materials readily available in the state of Montana.

While this research demonstrated the feasibility and benefits of using non-proprietary UHPC, further research is required before this material can be used in real-world applications, and more specifically before it can be used in field-cast joints between adjacent precast deck panels. In the research discussed herein, the concrete batches were 0.2- to 1.5-cubic feet in size, and were mixed using equipment available in the MSU concrete lab (i.e., a Hobart industrial cake mixer, and a conventional horizontal mortar mixer). This research and previous research on UHPC has shown that batch size, mixing equipment, mixing method, and mixing energy can have a significant effect on the performance of the resulting UHPC mix. Therefore, further research should be conducted on the proposed UHPC mix using the equipment that will be used in the field (most likely a high-shear pan mixer), under various mixing conditions (e.g., various temperatures, various aggregate moisture contents), and in larger batch sizes.

Further, previous research on UHPC field cast joints has shown that UHPC can reduce development lengths of the reinforcing in the inter-element connection zone, and thus reduce spacing between decks. However, this research was conducted using only proprietary UHPC concrete mixes. Further research should be conducted on field cast joints using the newly developed non-proprietary mix to ensure that this mix behaves as expected in this application (e.g., increased bond strength, decreased deck spacing).

REFERENCES

- Aaleti, S., & Sritharan, S. (2014). Design of Ultrahigh-Performance Concrete Waffle Deck for Accelerated Bridge Construction. *Transportation Research Record*(2406), 12-22. doi:10.3141/2406-02.
- Aaleti, S. R., Sritharan, S., Bierwagen, D., & Wipf, T. J. (2011). Structural Behavior of Waffle Bridge Deck Panels and Connections of Precast Ultra-High-Performance Concrete Experimental Evaluation. *Transportation Research Record*(2251), 82-92. doi:10.3141/2251-09.
- Alqadi, A. N. S., Bin Mustapha, K. N., Naganathan, S., & Al-Kadi, Q. N. S. (2012). Uses of central composite design and surface response to evaluate the influence of constituent materials on fresh and hardened properties of self-compacting concrete. *Ksce Journal of Civil Engineering*, 16(3), 407-416. doi:10.1007/s12205-012-1308-z.
- Berry, M., Kappes, B., & Kappes, L. (2015). Optimization of Concrete Mixtures Containing Reclaimed Asphalt Pavement. *Aci Materials Journal, 112*(6), 723-733.
- Brouwers, H. J. H., & Radix, H. J. (2005). *Self-compacting concrete: The role of the particle size distribution* (Vol. 42). Bagneux: R I L E M Publications.
- Cihan, M. T., Guner, A., & Yuzer, N. (2013). Response surfaces for compressive strength of concrete. *Construction and Building Materials*, 40, 763-774. doi:10.1016/j.conbuildmat.2012.11.048.
- El-Tawil, S., Alkaysi, M., Naaman, A., & Hansen, W. L., Z. (2016). Development, Characterization and Applications of a Non Proprietary Ultra High Performance Concrete for Highway Bridges. Retrieved from http://www.michigan.gov/mdot/0,4616,7-151-9622 11045 24249 24251-386988--,00.html.
- FHWA. (2013). Development of Non-Proprietary Ultra-High Perfomance Concrete for Use in the Highway Bridge Sector. Retrieved from

http://www.fhwa.dot.gov/publications/research/infrastructure/structures/bridge/13100/index.cfm.

- Fick, G. J. (2008). Testing Guide for Implementing Concrete Paving Quality Control Procedures. Retrieved from http://publications.iowa.gov/id/eprint/13618.
- Folliard, K. J., Du, L., & Trejo, D. (2003). Effects of curing conditions on strength development of controlled lowstrength material. *Aci Materials Journal, 100*(Compendex), 79-86.
- Ghezal, A., & Khayat, K. H. (2002). Optimizing self-consolidating concrete with limestone filler by using statistical factorial design methods. *Aci Materials Journal*, *99*(3), 264-272.
- Goodspeed, C., Vanikar, S., & Cook, R. (2013). High-Performance Concrete (HPC) Defined for Highway Structures. Retrieved from http://www.fhwa.dot.gov/bridge/hpcdef.htm.
- Goodspeed, C., Vanikar, S., & Cook, R. A. (1996). High-performance concrete defined for highway structures. *Concrete International, 18*(2).
- Goodspeed, C. H., Vanikar, S., & Cook, R. A. (1996). High-performance concrete defined for highway structures. *Concrete International, 18*(2).
- Graybeal, B. (2006a). Material property characterization of ultra-high performance concrete. Retrieved from http://www.fhwa.dot.gov/publications/research/infrastructure/structures/06103/06103.pdf.
- Graybeal, B. (2006b). Structural Behavior of Ultra High Performance Concrete Prestressed I-Girders. Retrieved from http://www.fhwa.dot.gov/publications/research/infrastructure/structures/06115/06115.pdf.
- Graybeal, B. (2010). Field-cast UHPC connections for modular bridge deck elements. Retrieved from http://www.fhwa.dot.gov/publications/research/infrastructure/bridge/11022/11022.pdf.
- Graybeal, B. (2011). Ultra-high performance concrete. Retrieved from http://www.fhwa.dot.gov/publications/research/infrastructure/structures/11038/11038.pdf.
- Graybeal, B. (2012). Ultra-High Performance Concrete Composite Connections for Precast Concrete Bridge Decks: US Department of Transportation, Federal Highway Administration.
- Graybeal, B., & Tanesi, J. (2007). Durability of an ultrahigh-performance concrete. *Journal of Materials in Civil Engineering*, 19(10), 848-854. doi:10.1061/(asce)0899-1561(2007)19:10(848).
- Honarvar, E., Sritharan, S., Rouse, J. M., & Aaleti, S. (2016). Bridge Decks with Precast UHPC Waffle Panels: A Field Evaluation and Design Optimization. *Journal of Bridge Engineering*, 21(1). doi:10.1061/(asce)be.1943-5592.0000775.
- Khayat, K. H., Ghezal, A., & Hadriche, M. S. (2000). Utility of Statistical Models in Proportioning Self-Consolidating Concrete. *Materials and Structures*, 33(229), 338-344. doi:10.1007/bf02479705.
- Kockal, N. U., & Ozturan, T. (2011). Optimization of properties of fly ash aggregates for high-strength lightweight concrete production. *Materials & Design*, *32*(6), 3586-3593. doi:10.1016/j.matdes.2011.02.028.

- Lee, G. C., Huang, C., Song, J., & O'Connor, J. S. (2014). Seismic Performance Evaluation of Precast Girders with Field-Cast Ultra High Performance Concrete (UHPC) Connections. Retrieved from http://hdl.handle.net/10477/29491.
- Lepech, M. D., & Li, V. C. (2009). Application of ECC for bridge deck link slabs. *Materials and Structures*, 42(9), 1185-1195. doi:10.1617/s11527-009-9544-5.
- Li, V. C. (2004). Strategies for High Performance Fiber Reinforced Cementitious Composites Development. Proceedings of the International Workshop on Advances in Fiber Reinforced Concrete, Proceedings of the International Workshop on Advances in Fiber Reinforced Concrete(Bergamo, Italy, Sept. 2004), 93-98.
- Long, W.-J., Lemieux, G., Hwang, S.-D., & Khayat, K. H. (2012). Statistical Models to Predict Fresh and Hardened Properties of Self-Consolidating Concrete. *Materials and Structures*, 45(7), 1035-1052. doi:10.1617/s11527-011-9815-9.
- Lovato, P. S., Possan, E., Coitinho Dal Molin, D. C., Masuero, A. B., & Ribeiro, J. L. D. (2012). Modeling of mechanical properties and durability of recycled aggregate concretes. *Construction and Building Materials*, 26(1), 437-447. doi:10.1016/j.conbuildmat.2011.06.043.
- Mohammed, B. S., Fang, O. C., Hossain, K. M. A., & Lachemi, M. (2012). Mix proportioning of concrete containing paper mill residuals using response surface methodology. *Construction and Building Materials*, 35, 63-68. doi:10.1016/j.conbuildmat.2012.02.050.
- Myers, R. H., & Montgomery, D. C. (2002). *Response Surface Methodology: Process and Product Optimization* Using Designed Experiments. New York: Wiley.
- Nambiar, E. K. K., & Ramamurthy, K. (2006). Models relating mixture composition to the density and strength of foam concrete using response surface methodology. *Cement & Concrete Composites*, 28(9), 752-760. doi:10.1016/j.cemconcomp.2006.06.001.
- Ng, K. W., Garder, J., & Sritharan, S. (2015). Investigation of ultra high performance concrete piles for integral abutment bridges. *Engineering Structures*, *105*, 220-230. doi:10.1016/j.engstruct.2015.10.009.
- Piotrowski, S., & Schmidt, M. (2012). *Life Cycle Cost Analysis of a UHPC-Bridge on Example of two Bridge Refurbishment Designs*. Paper presented at the Proceedings of Hipermat 2012 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials.
- Ranade, R., Li, V. C., Stults, M. D., Heard, W. F., & Rushing, T. S. (2013). Composite Properties of High-Strength, High-Ductility Concrete. *Aci Materials Journal*, *110*(4), 413-422.
- Rouse, J., Wipf, T., Phares, B., Fanous, F., & Berg, O. (2011). Design, Construction, and Field Testing of an Ultra-High Performance Concrete Pi-Girder Bridge.
- Simon, M. J. (2003). Concrete Mixture Optimization Using Statistical Methods: Final Report. Retrieved from https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/03060/03060.pdf.
- Sonebi, M., & Bassuoni, M. T. (2013). Investigating the effect of mixture design parameters on pervious concrete by statistical modelling. *Construction and Building Materials*, 38, 147-154. doi:10.1016/j.conbuildmat.2012.07.044.
- Wang, S. X., & Li, V. C. (2007). Engineered cementitious composites with high-volume fly ash. Aci Materials Journal, 104(3), 233-241.
- Wille, K., & Boisvert-Cotulio, C. (2015). Material efficiency in the design of ultra-high performance concrete. *Construction and Building Materials*, *86*, 33-43. doi:10.1016/j.conbuildmat.2015.03.087.
- Wille, K., Naaman, A. E., El-Tawil, S., & Parra-Montesinos, G. J. (2012). Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. *Materials and Structures*, 45(3), 309-324. doi:10.1617/s11527-011-9767-0.
- Wille, K., Naaman, A. E., & Parra-Montesinos, G. J. (2011). Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way. *Aci Materials Journal*, 108(1), 46-54.
- Wipf, T., Sritharan, S., Abu-Hawash, A., Phares, B., & Bierwagen, D. (2011). Iowa's ultra-high performance concrete implementation.
- Yuan, J., & Graybeal, B. (2014). Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete (FHWA-HRT-14-090). Retrieved from

https://www.fhwa.dot.gov/publications/research/infrastructure/structures/bridge/14090/14090.pdf.

- Yuan, J., & Graybeal, B. (2015). Bond of Reinforcement in Ultra-High-Performance Concrete. Aci Structural Journal, 112(6), 851-860.
- Zdeb, T. (2013). Ultra-high performance concrete properties and technology. *Bulletin of the Polish Academy of Sciences-Technical Sciences*, 61(1), 183-193. doi:DOI 10.2478/bpasts-2013-0017.
- Zohrevand, P., & Mirmiran, A. (2013). Seismic Response of Ultra-High Performance Concrete-Filled FRP Tube Columns. *Journal of Earthquake Engineering*, 17(1), 155-170. doi:10.1080/13632469.2012.713560.

APPENDIX A: 4-VARIABLE RSM MIX PROPORTIONS

Mix Specifications				
Mix ID: 1				
W/C	0.225	Unitless		
HRWR Dosage Rate	0.0275	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.85	Unitless		
Aggregate to Cement Ratio	1.00	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.67	Fraction of Volume		
Volume	0.20	cu. Ft		

Aggregates

Туре	Specific
	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Type	Specific	
туре	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2.75	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	67.24	0.1345			
Fine Aggregate	32.76	0.0655			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.035	cu ft	2.19	
HRWR	0.02	0.005	cu ft	0.29	127.
Portland Cement	0.27	0.054	cu ft	10.63	
Silica Fume	0.09	0.018	cu ft	2.44	
Fly Ash	0.12	0.023	cu ft	2.87	
Fine Aggregate	0.33	0.066	cu ft	10.63	
Steel Fibers	0.00	0.000	cu ft	0.00	

27.5 ml

Figure 39: Mix 1 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	Cost/ton Cost/		st/ cu. Yd
Water	295.6	\$	-	\$	-
HRWR (gallons)	4.55	\$	14.00	\$	63.68
Portland Cement	1435.0	\$	145.00	\$	104.04
Silica Fume	329.7	\$	840.00	\$	138.46
Fly Ash	387.8	\$	135.00	\$	26.18
Fine Aggregate	1435.0	\$	26.00	\$	18.65
Steel Fibers	0.0	\$1,600.00		\$	-
			Total	\$	351.01

Mix Specifications		
Mix ID:	:	2
W/C	0.225	Unitless
HRWR Dosage Rate	0.0275	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.15	Unitless
Aggregate to Cement Ratio	1.00	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.67	Fraction of Volume
Volume	0.20	cu. Ft

Aggregates

Aggregates				
Type	Specific			
Туре	Gravity			
Fine Aggregate	2.6			
Steel Fibers	7.8			
Weighted Average	2.60			

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2.75	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	67.19	0.1344			
Fine Aggregate	32.81	0.0656			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.035	cu ft	2.19	
HRWR	0.02	0.005	cu ft	0.29	127.
Portland Cement	0.27	0.054	cu ft	10.64	
Silica Fume	0.10	0.021	cu ft	2.85	
Fly Ash	0.10	0.020	cu ft	2.48	
Fine Aggregate	0.33	0.066	cu ft	10.64	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

Figure 40: Mix 2 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	Cost/ton Cost/		st/ cu. Yd
Water	296.1	\$	-	\$	-
HRWR (gallons)	4.56	\$	14.00	\$	63.78
Portland Cement	1437.1	\$	145.00	\$	104.19
Silica Fume	384.3	\$	840.00	\$	161.42
Fly Ash	334.2	\$	135.00	\$	22.56
Fine Aggregate	1437.1	\$	26.00	\$	18.68
Steel Fibers	0.0	\$1	L,600.00	\$	-
			Total	\$	370.62

Mix Specifications				
Mix ID:		3		
w/c	0.225	Unitless		
HRWR Dosage Rate	0.0275	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.85	Unitless		
Aggregate to Cement Ratio	1.50	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.58	Fraction of Volume		
Volume	0.20	cu. Ft		

Aggregates

Туре	Specific		
	Gravity		
Fine Aggregate	2.6		
Steel Fibers	7.8		
Weighted Average	2.60		

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2.75	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	57.78	0.1156		
Fine Aggregate	42.22	0.0844		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.030	cu ft	1.88	
HRWR	0.02	0.004	cu ft	0.25	109.
Portland Cement	0.23	0.046	cu ft	9.13	
Silica Fume	0.08	0.015	cu ft	2.10	
Fly Ash	0.10	0.020	cu ft	2.47	
Fine Aggregate	0.42	0.084	cu ft	13.70	
Steel Fibers	0.00	0.000	cu ft	0.00	

09.6 ml

Figure 41: Mix 3 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	Cost/ton		Cost/ cu. Ye	
Water	254.0	\$	-	\$	-
HRWR (gallons)	3.91	\$	14.00	\$	54.72
Portland Cement	1233.0	\$	145.00	\$	89.39
Silica Fume	283.3	\$	840.00	\$	118.97
Fly Ash	333.2	\$	135.00	\$	22.49
Fine Aggregate	1849.5	\$	26.00	\$	24.04
Steel Fibers	0.0	\$1,600.00		\$	-
			Total	\$	309.62
Mix Specifications					
------------------------------	--------	-----------------------------	--		
Mix ID: 4					
w/c	0.225	Unitless			
HRWR Dosage Rate	0.0275	Fraction of Cement wt			
SCM to Cement Ratio	0.5	Unitless			
Silica Fume to Fly Ash Ratio	1.15	Unitless			
Aggregate to Cement Ratio	1.50	Unitless			
Fiber Content	0.00	Fraction of Volume			
Paste Content	0.58	Fraction of Volume			
Volume	0.20	cu. Ft			

Туре	Specific
	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Type	Specific	
туре	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2.75	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	57.73	0.1155	
Fine Aggregate	42.27	0.0845	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.030	cu ft	1.88	
HRWR	0.02	0.004	cu ft	0.25	109
Portland Cement	0.23	0.047	cu ft	9.14	
Silica Fume	0.09	0.018	cu ft	2.45	
Fly Ash	0.09	0.017	cu ft	2.13	
Fine Aggregate	0.42	0.085	cu ft	13.72	
Steel Fibers	0.00	0.000	cu ft	0.00	

.09.7 ml

Figure 42: Mix 4 Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs)	С	Cost/ton C		Cost/ cu. Yo	
Water	254.4	\$	\$ -		-	
HRWR (gallons)	3.91	\$	14.00	\$	54.79	
Portland Cement	1234.6	\$	145.00	\$	89.51	
Silica Fume	330.2	\$	840.00	\$	138.67	
Fly Ash	287.1	\$	135.00	\$	19.38	
Fine Aggregate	1851.8	\$	26.00	\$	24.07	
Steel Fibers	0.0	\$1	L,600.00	\$	-	
			Total	\$	326.42	

Mix Specifications			
Mix ID: 5			
w/c	0.225	Unitless	
HRWR Dosage Rate	0.0625	Fraction of Cement wt	
SCM to Cement Ratio	0.5	Unitless	
Silica Fume to Fly Ash Ratio	0.85	Unitless	
Aggregate to Cement Ratio	1.00	Unitless	
Fiber Content	0.00	Fraction of Volume	
Paste Content	0.68	Fraction of Volume	
Volume	0.20	cu. Ft	

Aggregates		
Type	Specific	
туре	Gravity	
Fine Aggregate	2.6	
Steel Fibers	7.8	
Weighted Average	2.60	

Cementitious Materials		
Type	Specific	
туре	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6.25	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	67.50	0.1350	
Fine Aggregate	32.50	0.0650	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.031	cu ft	1.92	
HRWR	0.05	0.010	cu ft	0.66	287.
Portland Cement	0.27	0.054	cu ft	10.54	
Silica Fume	0.09	0.018	cu ft	2.42	
Fly Ash	0.11	0.023	cu ft	2.85	
Fine Aggregate	0.32	0.065	cu ft	10.54	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 43: Mix 5 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	Cost/ton		Cost/ cu. Y	
Water	258.9	\$	-	\$	-
HRWR (gallons)	10.25	\$	14.00	\$	143.57
Portland Cement	1423.4	\$	145.00	\$	103.20
Silica Fume	327.0	\$	840.00	\$	137.34
Fly Ash	384.7	\$	135.00	\$	25.97
Fine Aggregate	1423.4	\$	26.00	\$	18.50
Steel Fibers	0.0	\$1	1,600.00	\$	-
			Total	\$	428.59

Mix Specifications		
Mix ID:	(5
W/C	0.225	Unitless
HRWR Dosage Rate	0.0625	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.15	Unitless
Aggregate to Cement Ratio	1.00	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.67	Fraction of Volume
Volume	0.20	cu. Ft

Aggregates			
Type	Specific		
Туре	Gravity		
Fine Aggregate	2.6		
Steel Fibers	7.8		
Weighted Average	2.60		

Cementitious Materials		
Type	Specific	
туре	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6.25	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	67.46	0.1349		
Fine Aggregate	32.54	0.0651		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.031	cu ft	1.92	
HRWR	0.05	0.010	cu ft	0.66	288.
Portland Cement	0.27	0.054	cu ft	10.56	
Silica Fume	0.10	0.021	cu ft	2.82	
Fly Ash	0.10	0.020	cu ft	2.46	
Fine Aggregate	0.33	0.065	cu ft	10.56	
Steel Fibers	0.00	0.000	cu ft	0.00	

0 ml

Figure 44: Mix 6 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	Cost/ton		st/ cu. Yd
Water	259.3	\$	-	\$	-
HRWR (gallons)	10.27	\$	14.00	\$	143.78
Portland Cement	1425.5	\$	145.00	\$	103.35
Silica Fume	381.2	\$	840.00	\$	160.12
Fly Ash	331.5	\$	135.00	\$	22.38
Fine Aggregate	1425.5	\$	26.00	\$	18.53
Steel Fibers	0.0	\$1	1,600.00	\$	-
			Total	\$	448.16

\$ 448.16

Mix Specifications				
Mix ID: 7				
W/C	0.225	Unitless		
HRWR Dosage Rate	0.0625	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.85	Unitless		
Aggregate to Cement Ratio	1.50	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.58	Fraction of Volume		
Volume	0.20	cu. Ft		

Туре	Specific
турс	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Type	Specific	
туре	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6.25	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	58.07	0.1161			
Fine Aggregate	41.93	0.0839			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.13	0.026	cu ft	1.65	
HRWR	0.04	0.009	cu ft	0.57	247.4
Portland Cement	0.23	0.046	cu ft	9.07	
Silica Fume	0.08	0.015	cu ft	2.08	
Fly Ash	0.10	0.020 cu ft		2.45	
Fine Aggregate	0.42	0.084	cu ft	13.61	
Steel Fibers	0.00	0.000	cu ft	0.00	

47.4 ml

Figure 45: Mix 7 Proportions

	Mix Wt. (lbs)	C	ost/ton	Cos	st/ cu. Yd
Water	222.7	\$	-	\$	-
HRWR (gallons)	8.82	\$	14.00	\$	123.50
Portland Cement	1224.5	\$	145.00	\$	88.78
Silica Fume	281.3	\$	840.00	\$	118.15
Fly Ash	330.9	\$	135.00	\$	22.34
Fine Aggregate	1836.7	\$	26.00	\$	23.88
Steel Fibers	0.0	\$1	L,600.00	\$	-
			Total	\$	376.64

Mix Specifications				
Mix ID:	5	3		
w/c	0.225	Unitless		
HRWR Dosage Rate	0.0625	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.15	Unitless		
Aggregate to Cement Ratio	1.50	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.58	Fraction of Volume		
Volume	0.20	cu. Ft		

_	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6.25	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	58.02	0.1160			
Fine Aggregate	41.98	0.0840			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.13	0.026	cu ft	1.65	
HRWR	0.04	0.009	cu ft	0.57	247.7
Portland Cement	0.23	0.046	cu ft	9.08	
Silica Fume	0.09	0.018	cu ft	2.43	
Fly Ash	0.08	0.017 cu ft		2.11	
Fine Aggregate	0.42	0.084	cu ft	13.62	
Steel Fibers	0.00	0.000	cu ft	0.00	

47.7 ml

Figure 46: Mix 8 Proportions

	Mix Wt. (lbs)	C	Cost/ton Cost/ c		st/ cu. Yd
Water	223.0	\$	-	\$	-
HRWR (gallons)	8.83	\$	14.00	\$	123.66
Portland Cement	1226.0	\$	145.00	\$	88.89
Silica Fume	327.9	\$	840.00	\$	137.71
Fly Ash	285.1	\$	135.00	\$	19.25
Fine Aggregate	1839.0	\$	26.00	\$	23.91
Steel Fibers	0.0	\$1	L,600.00	\$	-
			Total	\$	393.41

Mix Specifications				
Mix ID:	0	Ð		
w/c	0.275	Unitless		
HRWR Dosage Rate	0.0275	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.85	Unitless		
Aggregate to Cement Ratio	1.50	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.59	Fraction of Volume		
Volume	0.20	cu. Ft		

Ture	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2.75	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	59.27	0.1185		
Fine Aggregate	40.73	0.0815		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.036	cu ft	2.26	
HRWR	0.02	0.004	cu ft	0.24	105.7
Portland Cement	0.22	0.045	cu ft	8.81	
Silica Fume	0.07	0.015	cu ft	2.02	
Fly Ash	0.10	0.019	cu ft	2.38	
Fine Aggregate	0.41	0.081	cu ft	13.22	
Steel Fibers	0.00	0.000	cu ft	0.00	

105.7 ml

Figure 47: Mix 9 Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs)	С	ost/ton	Co	st/ cu. Yd	
Water	304.5	\$	-	\$	-	
HRWR (gallons)	3.77	\$	14.00	\$	52.79	
Portland Cement	1189.5	\$	145.00	\$	86.24	
Silica Fume	273.3	\$	840.00	\$	114.77	
Fly Ash	321.5	\$	135.00	\$	21.70	
Fine Aggregate	1784.2	\$	26.00	\$	23.20	
Steel Fibers	0.0	\$1,600.00		\$	-	
Total \$ 298.69					298.69	

Mix Specifications		
Mix ID:	1	.0
W/C	0.275	Unitless
HRWR Dosage Rate	0.0275	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.15	Unitless
Aggregate to Cement Ratio	1.00	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.69	Fraction of Volume
Volume	0.20	cu. Ft

Aggregates				
Type	Specific			
Туре	Gravity			
Fine Aggregate	2.6			
Steel Fibers	7.8			
Weighted Average	2.60			

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2.75	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	68.54	0.1371		
Fine Aggregate	31.46	0.0629		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.21	0.042	cu ft	2.61	
HRWR	0.02	0.004	cu ft	0.28	122.
Portland Cement	0.26	0.052	cu ft	10.21	
Silica Fume	0.10	0.020	cu ft	2.73	
Fly Ash	0.10	0.019	cu ft	2.37	
Fine Aggregate	0.31	0.063	cu ft	10.21	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 48: Mix 10 Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs)	Cost/ton Cost/ c			st/ cu. Yd	
Water	352.9	\$	\$ -		-	
HRWR (gallons)	4.37	\$	14.00	\$	61.17	
Portland Cement	1378.3	\$	145.00	\$	99.93	
Silica Fume	368.6	\$	840.00	\$	154.82	
Fly Ash	320.5	\$	135.00	\$	21.64	
Fine Aggregate	1378.3	\$	26.00	\$	17.92	
Steel Fibers	0.0	\$1,600.00		\$	-	
			Total	\$	355.46	

Mix Specifications				
Mix ID: 11				
w/c	0.275	Unitless		
HRWR Dosage Rate	0.0275	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.85	Unitless		
Aggregate to Cement Ratio	1.50	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.59	Fraction of Volume		
Volume	0.20	cu. Ft		

_	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2.75	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	59.27	0.1185			
Fine Aggregate	40.73	0.0815			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.036	cu ft	2.26	
HRWR	0.02	0.004	cu ft	0.24	105.7
Portland Cement	0.22	0.045	cu ft	8.81	
Silica Fume	0.07	0.015	cu ft	2.02	
Fly Ash	0.10	0.019	cu ft	2.38	
Fine Aggregate	0.41	0.081	cu ft	13.22	
Steel Fibers	0.00	0.000	cu ft	0.00	

05.7 ml

Figure 49: Mix 11 Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs) Cost/ton		Cost/ton		st/ cu. Yd	
Water	304.5	\$	-	\$	-	
HRWR (gallons)	3.77	\$	14.00	\$	52.79	
Portland Cement	1189.5	\$	145.00	\$	86.24	
Silica Fume	273.3	\$	840.00	\$	114.77	
Fly Ash	321.5	\$	135.00	\$	21.70	
Fine Aggregate	1784.2	\$	26.00	\$	23.19	
Steel Fibers	0.0	\$1,600.00		\$	-	
			Total	Ś	298 69	

Total \$ 298.69

Mix Specifications				
Mix ID: 12				
w/c	0.275	Unitless		
HRWR Dosage Rate	0.0275	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.15	Unitless		
Aggregate to Cement Ratio	1.5	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.59	Fraction of Volume		
Volume	0.20	cu. Ft		

Aggregates				
Type	Specific			
Туре	Gravity			
Fine Aggregate	2.6			
Steel Fibers	7.8			
Weighted Average	2.60			

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2.75	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	59.22	0.1184	
Fine Aggregate	40.78	0.0816	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.036	cu ft	2.26	
HRWR	0.02	0.004	cu ft	0.24	105.9
Portland Cement	0.22	0.045	cu ft	8.82	
Silica Fume	0.09	0.017	cu ft	2.36	
Fly Ash	0.08	0.016	cu ft	2.05	
Fine Aggregate	0.41	0.082	cu ft	13.23	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

Mix Wt. (lbs) Cost/ton Cost/ cu. Yd 304.9 Water \$ \$ _ HRWR 3.78 \$ 14.00 \$ 52.85 (gallons) Portland \$ 145.00 \$ 1190.9 86.34 Cement Silica 318.5 \$ 840.00 \$ 133.77 Fume 277.0 \$ 135.00 18.69 Fly Ash \$ Fine 1786.4 26.00 \$ \$ 23.22 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers

Cubic Yard Calculations

Total \$ 314.88

Figure 50: Mix 12 Proportions

Mix Specifications			
Mix ID: 13			
w/c	0.275	Unitless	
HRWR Dosage Rate	0.0625	Fraction of Cement wt	
SCM to Cement Ratio	0.5	Unitless	
Silica Fume to Fly Ash Ratio	0.85	Unitless	
Aggregate to Cement Ratio	1.00	Unitless	
Fiber Content	0.00	Fraction of Volume	
Paste Content	0.69	Fraction of Volume	
Volume	0.20	cu. Ft	

Туре	Specific Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6.25	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	68.82	0.1376	
Fine Aggregate	31.18	0.0624	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.19	0.038	cu ft	2.35	
HRWR	0.05	0.010	cu ft	0.63	275.
Portland Cement	0.26	0.051	cu ft	10.12	
Silica Fume	0.08	0.017	cu ft	2.32	
Fly Ash	0.11	0.022	cu ft	2.73	
Fine Aggregate	0.31	0.062	cu ft	10.12	
Steel Fibers	0.00	0.000	cu ft	0.00	

75.9 ml

Figure 51: Mix 13 Proportions

	Mix Wt (lbs) Cost/ton Cost/ cu Y				st/cu_Vd
Water	316.7	\$	\$ - \$		-
HRWR (gallons)	9.84	\$	14.00	\$	137.75
Portland Cement	1365.8	\$	145.00	\$	99.02
Silica Fume	313.8	\$	840.00	\$	131.78
Fly Ash	369.1	\$	135.00	\$	24.92
Fine Aggregate	1365.8	\$	26.00	\$	17.75
Steel Fibers	0.0	\$:	1,600.00	\$	-
			Total	\$	411.21

Mix Specifications			
Mix ID:	1	.4	
W/C	0.275	Unitless	
HRWR Dosage Rate	0.0625	Fraction of Cement wt	
SCM to Cement Ratio	0.5	Unitless	
Silica Fume to Fly Ash Ratio	1.15	Unitless	
Aggregate to Cement Ratio	1.00	Unitless	
Fiber Content	0.00	Fraction of Volume	
Paste Content	0.69	Fraction of Volume	
Volume	0.20	cu. Ft	

Aggregates				
Type	Specific			
Туре	Gravity			
Fine Aggregate	2.6			
Steel Fibers	7.8			
Weighted Average	2.60			

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6.25	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	68.78	0.1376			
Fine Aggregate	31.22	0.0624			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.19	0.038	cu ft	2.35	
HRWR	0.05	0.010	cu ft	0.63	276
Portland Cement	0.26	0.052	cu ft	10.13	
Silica Fume	0.10	0.020	cu ft	2.71	
Fly Ash	0.09	0.019 cu ft		2.36	
Fine Aggregate	0.31	0.062	cu ft	10.13	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 52: Mix 14 Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs)	С	Cost/ton 0		st/ cu. Yd	
Water	317.1	\$	-	\$	-	
HRWR (gallons)	9.85	\$	14.00	\$	137.94	
Portland Cement	1367.7	\$	145.00	\$	99.15	
Silica Fume	365.8	\$	840.00	\$	153.62	
Fly Ash	318.1	\$	135.00	\$	21.47	
Fine Aggregate	1367.7	\$	26.00	\$	17.78	
Steel Fibers	0.0	\$1	L,600.00	\$	-	
			Total	\$	429.97	

Mix Specifications				
Mix ID: 15				
W/C	0.275	Unitless		
HRWR Dosage Rate	0.0625	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.85	Unitless		
Aggregate to Cement Ratio	1.50	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.60	Fraction of Volume		
Volume	0.20	cu. Ft		

Aggregates				
Type	Specific			
Туре	Gravity			
Fine Aggregate	2.6			
Steel Fibers	7.8			
Weighted Average	2.60			

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6.25	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	59.54	0.1191			
Fine Aggregate	40.46	0.0809			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.16	0.033	cu ft	2.03	
HRWR	0.04	0.008	cu ft	0.55	238.7
Portland Cement	0.22	0.045	cu ft	8.75	
Silica Fume	0.07	0.015	cu ft	2.01	
Fly Ash	0.09	0.019 cu ft		2.37	
Fine Aggregate	0.40	0.081	cu ft	13.13	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 53: Mix 15 Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs)	С	Cost/ton Cost/		st/ cu. Yd	
Water	274.0	\$	-	\$	-	
HRWR (gallons)	8.51	\$	14.00	\$	119.17	
Portland Cement	1181.6	\$	145.00	\$	85.66	
Silica Fume	271.4	\$	840.00	\$	114.00	
Fly Ash	319.3	\$	135.00	\$	21.56	
Fine Aggregate	1772.3	\$	26.00	\$	23.04	
Steel Fibers	0.0	\$1	L,600.00	\$	-	
			Total	\$	363.44	

Mix Specifications					
Mix ID:	1	.6			
w/c	0.275	Unitless			
HRWR Dosage Rate	0.0625	Fraction of Cement wt			
SCM to Cement Ratio	0.5	Unitless			
Silica Fume to Fly Ash Ratio	1.15	Unitless			
Aggregate to Cement Ratio	1.50	Unitless			
Fiber Content	0.00	Fraction of Volume			
Paste Content	0.59	Fraction of Volume			
Volume	0.20	cu. Ft			

Aggregates				
Type	Specific			
туре	Gravity			
Fine Aggregate	2.6			
Steel Fibers	7.8			
Weighted Average	2.60			

Cementitious Materials	
Туре	Specific
	Gravity
Portland Type I-II	3.15
Fly Ash	2
Silica Fume	2.2

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6.25	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	59.49	0.1190		
Fine Aggregate	40.51	0.0810		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.16	0.033	cu ft	2.03	
HRWR	0.04	0.008	cu ft	0.55	239.
Portland Cement	0.22	0.045	cu ft	8.76	
Silica Fume	0.09	0.017	cu ft	2.34	
Fly Ash	0.08	0.016	cu ft	2.04	
Fine Aggregate	0.41	0.081	cu ft	13.14	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

Figure 54: Mix 16 Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs)	Cost/ton		Co	st/ cu. Yd	
Water	274.3	\$	-	\$	-	
HRWR (gallons)	8.52	\$	14.00	\$	119.32	
Portland Cement	1183.0	\$	145.00	\$	85.77	
Silica Fume	316.4	\$	840.00	\$	132.88	
Fly Ash	275.1	\$	135.00	\$	18.57	
Fine Aggregate	1774.5	\$	26.00	\$	23.07	
Steel Fibers	0.0	\$:	1,600.00	\$	-	
			Total	Ś	379 60	

Total \$ 379.60

Mix Specifications				
Mix ID: 17				
W/C	0.2	Unitless		
HRWR Dosage Rate	0.045	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.00	Unitless		
Aggregate to Cement Ratio	1.25	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.62	Fraction of Volume		
Volume	0.20	cu. Ft		

Aggregates			
Type	Specific		
Туре	Gravity		
Fine Aggregate	2.6		
Steel Fibers	7.8		
Weighted Average	2.60		

Cementitious Materials	
Туре	Specific
	Gravity
Portland Type I-II	3.15
Fly Ash	2
Silica Fume	2.2

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions		
Item	Percent	Volume (cu ft)
Water +HRWR + Cementitious	61.51	0.1230
Fine Aggregate	38.49	0.0770
Steel Fibers	0.00	0.0000
Total	100.00	0.2000

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.14	0.027	cu ft	1.69	
HRWR	0.03	0.007	cu ft	0.45	196.
Portland Cement	0.25	0.051	cu ft	9.99	
Silica Fume	0.09	0.018	cu ft	2.50	
Fly Ash	0.10	0.020	cu ft	2.50	
Fine Aggregate	0.38	0.077	cu ft	12.49	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 55: Mix 17 Proportions

	Mix Wt (lbs) Cost/ton Cost/ cu Yo						
			COST/TOTI		cost/toni co.		sų cu. lu
Water	227.9	Ş	-	Ş	-		
HRWR (gallons)	7.00	\$	14.00	\$	97.95		
Portland Cement	1348.8	\$	145.00	\$	97.79		
Silica Fume	337.2	\$	840.00	\$	141.63		
Fly Ash	337.2	\$	135.00	\$	22.76		
Fine Aggregate	1686.0	\$	26.00	\$	21.92		
Steel Fibers	0.0	\$1,600.00		\$	-		
			Total	\$	382.05		

Mix Specifications				
Mix ID: 18				
w/c	0.3	Unitless		
HRWR Dosage Rate	0.045	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.00	Unitless		
Aggregate to Cement Ratio	1.25	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.64	Fraction of Volume		
Volume	0.20	cu. Ft		

Туре	Specific
	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	64.36	0.1287			
Fine Aggregate	35.64	0.0713			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.20	0.040	cu ft	2.49	
HRWR	0.03	0.006	cu ft	0.42	181.
Portland Cement	0.24	0.047	cu ft	9.25	
Silica Fume	0.08	0.017	cu ft	2.31	
Fly Ash	0.09	0.019	cu ft	2.31	
Fine Aggregate	0.36	0.071	cu ft	11.56	
Steel Fibers	0.00	0.000	cu ft	0.00	

81.6 ml

Figure 56: Mix 18 Proportions

	Mix Wt. (lbs)	Cost/ton		Cost/ton Cost		
Water	335.9	\$	\$ -		-	
HRWR (gallons)	6.48	\$	14.00	\$	90.69	
Portland Cement	1248.8	\$	145.00	\$	90.54	
Silica Fume	312.2	\$	840.00	\$	131.13	
Fly Ash	312.2	\$	135.00	\$	21.07	
Fine Aggregate	1561.1	\$	26.00	\$	20.29	
Steel Fibers	0.0	\$1,600.00		\$	-	
			Total	\$	353.73	

Mix Specifications				
Mix ID: 19				
w/c	0.25	Unitless		
HRWR Dosage Rate	0.01	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.00	Unitless		
Aggregate to Cement Ratio	1.25	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.63	Fraction of Volume		
Volume	0.20	cu. Ft		

Aggregates

Туре	Specific
	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	1	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	62.72	0.1254	
Fine Aggregate	37.28	0.0746	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.19	0.038	cu ft	2.35	
HRWR	0.01	0.001	cu ft	0.10	42
Portland Cement	0.25	0.049	cu ft	9.68	
Silica Fume	0.09	0.018	cu ft	2.42	
Fly Ash	0.10	0.019	cu ft	2.42	
Fine Aggregate	0.37	0.075	cu ft	12.10	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

Figure 57: Mix 19 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	ost/ton	n Cost/ cu. \	
Water	317.6	\$	-	\$	-
HRWR (gallons)	1.51	\$	14.00	\$	21.08
Portland Cement	1306.5	\$	145.00	\$	94.72
Silica Fume	326.6	\$	840.00	\$	137.18
Fly Ash	326.6	\$	135.00	\$	22.05
Fine Aggregate	1633.1	\$	26.00	\$	21.23
Steel Fibers	0.0	\$1,600.00		\$	-
			Total	\$	296.26

Mix Specifications			
Mix ID:	2	20	
W/C	0.25	Unitless	
HRWR Dosage Rate	0.08	Fraction of Cement wt	
SCM to Cement Ratio	0.5	Unitless	
Silica Fume to Fly Ash Ratio	1.00	Unitless	
Aggregate to Cement Ratio	1.25	Unitless	
Fiber Content	0.00	Fraction of Volume	
Paste Content	0.63	Fraction of Volume	
Volume	0.20	cu. Ft	

Type	Specific
.,,-	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	8	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	63.26	0.1265	
Fine Aggregate	36.74	0.0735	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.030	cu ft	1.86	
HRWR	0.06	0.012	cu ft	0.76	332.
Portland Cement	0.24	0.049	cu ft	9.54	
Silica Fume	0.09	0.017	cu ft	2.38	
Fly Ash	0.10	0.019	cu ft	2.38	
Fine Aggregate	0.37	0.073	cu ft	11.92	
Steel Fibers	0.00	0.000	cu ft	0.00	

32.9 ml

Figure 58: Mix 20 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	Cost/ton		st/ cu. Yd
Water	250.8	\$	-	\$	-
HRWR (gallons)	11.87	\$	14.00	\$	166.22
Portland Cement	1287.5	\$	145.00	\$	93.34
Silica Fume	321.9	\$	840.00	\$	135.19
Fly Ash	321.9	\$	135.00	\$	21.73
Fine Aggregate	1609.4	\$	26.00	\$	20.92
Steel Fibers	0.0	\$1	L,600.00	\$	-
			Total	\$	437.40

Mix Specifications		
Mix ID:	2	1
W/C	0.25	Unitless
HRWR Dosage Rate	0.045	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.00	Unitless
Aggregate to Cement Ratio	0.75	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.74	Fraction of Volume
Volume	0.20	cu. Ft

Туре	Specific
	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	73.94	0.1479		
Fine Aggregate	26.06	0.0521		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.20	0.040	cu ft	2.47	
HRWR	0.04	0.008	cu ft	0.51	221.4
Portland Cement	0.29	0.057	cu ft	11.28	
Silica Fume	0.10	0.021	cu ft	2.82	
Fly Ash	0.11	0.023	cu ft	2.82	
Fine Aggregate	0.26	0.052	cu ft	8.46	
Steel Fibers	0.00	0.000	cu ft	0.00	

21.4 ml

Figure 59: Mix 21 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	C	Cost/ton		st/ cu. Yd
Water	333.3	\$	-	\$	-
HRWR (gallons)	7.90	\$	14.00	\$	110.55
Portland Cement	1522.3	\$	145.00	\$	110.36
Silica Fume	380.6	\$	840.00	\$	159.84
Fly Ash	380.6	\$	135.00	\$	25.69
Fine Aggregate	1141.7	\$	26.00	\$	14.84
Steel Fibers	0.0	\$1	L,600.00	\$	-
			Total	\$	421.28

Mix Specifications		
Mix ID:	2	2
w/c	0.25	Unitless
HRWR Dosage Rate	0.045	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.00	Unitless
Aggregate to Cement Ratio	1.75	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.55	Fraction of Volume
Volume	0.20	cu. Ft

Туре	Specific
	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	54.87	0.1097		
Fine Aggregate	45.13	0.0903		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.029	cu ft	1.83	
HRWR	0.03	0.006	cu ft	0.38	164.3
Portland Cement	0.21	0.043	cu ft	8.37	
Silica Fume	0.08	0.015	cu ft	2.09	
Fly Ash	0.08	0.017	cu ft	2.09	
Fine Aggregate	0.45	0.090	cu ft	14.64	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 60: Mix 22 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	(lbs) Cost/ton Cost/		st/ cu. Yd	
Water	247.3	\$	-	\$	-
HRWR (gallons)	5.86	\$	14.00	\$	82.04
Portland Cement	1129.7	\$	145.00	\$	81.90
Silica Fume	282.4	\$	840.00	\$	118.62
Fly Ash	282.4	\$	135.00	\$	19.06
Fine Aggregate	1976.9	\$	26.00	\$	25.70
Steel Fibers	0.0	\$1	L,600.00	\$	-
			Total	\$	327.32

Mix Specifications		
Mix ID:	2	3
W/C	0.25	Unitless
HRWR Dosage Rate	0.045	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	0.70	Unitless
Aggregate to Cement Ratio	1.25	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.63	Fraction of Volume
Volume	0.20	cu. Ft

_	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Type	Specific	
туре	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	63.05	0.1261		
Fine Aggregate	36.95	0.0739		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.17	0.034	cu ft	2.10	
HRWR	0.03	0.007	cu ft	0.43	188.
Portland Cement	0.24	0.049	cu ft	9.59	
Silica Fume	0.07	0.014	cu ft	1.97	
Fly Ash	0.11	0.023	cu ft	2.82	
Fine Aggregate	0.37	0.074	cu ft	11.99	
Steel Fibers	0.00	0.000	cu ft	0.00	

.88.3 ml

Figure 61: Mix 23 Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs)	Cost/ton		x Wt. (lbs) Cost/ton Cost/ o		st/ cu. Yd
Water	283.5	\$	\$-		-	
HRWR (gallons)	6.72	\$	14.00	\$	94.04	
Portland Cement	1294.9	\$	145.00	\$	93.88	
Silica Fume	266.6	\$	840.00	\$	111.97	
Fly Ash	380.9	\$	135.00	\$	25.71	
Fine Aggregate	1618.6	\$	26.00	\$	21.04	
Steel Fibers	0.0	\$:	L,600.00	\$	-	
			Total	Ś	3/6 6/	

Total \$ 346.64

Mix Specifications		
Mix ID:	2	4
W/C	0.25	Unitless
HRWR Dosage Rate	0.045	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.30	Unitless
Aggregate to Cement Ratio	1.25	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.63	Fraction of Volume
Volume	0.20	cu. Ft

_	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Type	Specific	
туре	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	62.95	0.1259		
Fine Aggregate	37.05	0.0741		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.17	0.034	cu ft	2.11	
HRWR	0.03	0.007	cu ft	0.43	188.8
Portland Cement	0.24	0.049	cu ft	9.62	
Silica Fume	0.10	0.020	cu ft	2.72	
Fly Ash	0.08	0.017	cu ft	2.09	
Fine Aggregate	0.37	0.074	cu ft	12.02	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

Figure 62: Mix 24 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	Cost/ton		Cos	st/ cu. Yd
Water	284.3	\$	-	\$	-
HRWR (gallons)	6.73	\$	14.00	\$	94.29
Portland Cement	1298.4	\$	145.00	\$	94.13
Silica Fume	366.9	\$	840.00	\$	154.11
Fly Ash	282.3	\$	135.00	\$	19.05
Fine Aggregate	1623.0	\$	26.00	\$	21.10
Steel Fibers	0.0	\$1	1,600.00	\$	-
			Total	\$	382.69

Mix Specifications		
Mix ID:	25	5 C
W/C	0.25	Unitless
HRWR Dosage Rate	0.045	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.00	Unitless
Aggregate to Cement Ratio	1.25	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.63	Fraction of Volume
Volume	0.20	cu. Ft

_	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions		
Item	Percent	Volume (cu ft)
Water +HRWR + Cementitious	62.99	0.1260
Fine Aggregate	37.01	0.0740
Steel Fibers	0.00	0.0000
Total	100.00	0.2000

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.17	0.034	cu ft	2.10	
HRWR	0.03	0.007	cu ft	0.43	188.6
Portland Cement	0.24	0.049	cu ft	9.61	
Silica Fume	0.09	0.017	cu ft	2.40	
Fly Ash	0.10	0.019	cu ft	2.40	
Fine Aggregate	0.37	0.074	cu ft	12.01	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 63: Mix 25 C Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	Cost/ton		st/ cu. Yd
Water	284.0	\$	-	\$	-
HRWR (gallons)	6.73	\$	14.00	\$	94.18
Portland Cement	1296.9	\$	145.00	\$	94.03
Silica Fume	324.2	\$	840.00	\$	136.18
Fly Ash	324.2	\$	135.00	\$	21.89
Fine Aggregate	1621.1	\$	26.00	\$	21.07
Steel Fibers	0.0	\$1	L,600.00	\$	-
			Total	\$	367.34

Mix Specifications		
Mix ID:	26	5 C
W/C	0.25	Unitless
HRWR Dosage Rate	0.045	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.00	Unitless
Aggregate to Cement Ratio	1.25	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.63	Fraction of Volume
Volume	0.20	cu. Ft

_	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	62.99	0.1260			
Fine Aggregate	37.01	0.0740			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.17	0.034	cu ft	2.10	
HRWR	0.03	0.007	cu ft	0.43	188.6
Portland Cement	0.24	0.049	cu ft	9.61	
Silica Fume	0.09	0.017	cu ft	2.40	
Fly Ash	0.10	0.019 cu ft		2.40	
Fine Aggregate	0.37	0.074	cu ft	12.01	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 64: Mix 26 C Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	Cost/ton		st/ cu. Yd
Water	284.0	\$	-	\$	-
HRWR (gallons)	6.73	\$	14.00	\$	94.18
Portland Cement	1296.9	\$	145.00	\$	94.03
Silica Fume	324.2	\$	840.00	\$	136.18
Fly Ash	324.2	\$	135.00	\$	21.89
Fine Aggregate	1621.1	\$	26.00	\$	21.07
Steel Fibers	0.0	\$1	L,600.00	\$	-
			Total	\$	367.34

Mix Specifications					
Mix ID:	27	7 C			
W/C	0.25	Unitless			
HRWR Dosage Rate	0.045	Fraction of Cement wt			
SCM to Cement Ratio	0.5	Unitless			
Silica Fume to Fly Ash Ratio	1.00	Unitless			
Aggregate to Cement Ratio	1.25	Unitless			
Fiber Content	0.00	Fraction of Volume			
Paste Content	0.63	Fraction of Volume			
Volume	0.20	cu. Ft			

_	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	62.99	0.1260			
Fine Aggregate	37.01	0.0740			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.17	0.034	cu ft	2.10	
HRWR	0.03	0.007	cu ft	0.43	188.6
Portland Cement	0.24	0.049	cu ft	9.61	
Silica Fume	0.09	0.017	cu ft	2.40	
Fly Ash	0.10	0.019 cu ft		2.40	
Fine Aggregate	0.37	0.074	cu ft	12.01	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

Figure 65: Mix 27 C Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs)	С	ost/ton	Cost/ cu. Yo		
Water	284.0	\$	-	\$	-	
HRWR (gallons)	6.73	\$	14.00	\$	94.18	
Portland Cement	1296.9	\$	145.00	\$	94.03	
Silica Fume	324.2	\$	840.00	\$	136.18	
Fly Ash	324.2	\$	135.00	\$	21.89	
Fine Aggregate	1621.1	\$	26.00	\$	21.07	
Steel Fibers	0.0	\$1	L,600.00	\$	-	

Total \$ 367.34

APPENDIX B: TRIAL MIX PROPORTIONS

Mix Specifications					
Mix ID: S1					
W/C	0.24	Unitless			
HRWR Dosage Rate	0.04	Fraction of Cement wt			
SCM to Cement Ratio	0.5	Unitless			
Silica Fume to Fly Ash Ratio	1.00	Unitless			
Aggregate to Cement Ratio	1.00	Unitless			
Fiber Content	0.00	Fraction of Volume			
Paste Content	0.68	Fraction of Volume			
Volume	0.20	cu. Ft			

Туре	Specific Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials	
Туре	Specific
туре	Gravity
Portland Type I-II	3.15
Fly Ash	2
Silica Fume	2.2

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	67.72	0.1354		
Fine Aggregate	32.28	0.0646		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.036	cu ft	2.22	
HRWR	0.03	0.006	cu ft	0.42	182
Portland Cement	0.27	0.053	cu ft	10.47	
Silica Fume	0.10	0.019	cu ft	2.62	
Fly Ash	0.10	0.021	cu ft	2.62	
Fine Aggregate	0.32	0.065	cu ft	10.47	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

Figure 66: Mix S1 Proportions

Cubic Yard Calculations						
	Mix Wt. (lbs)	lix Wt. (lbs) Cost/ton		Co	st/ cu. Yd	
Water	300.3	\$	-	\$ -		
HRWR (gallons)	6.52	\$	14.00	\$	91.27	
Portland Cement	1413.9	\$	145.00	\$	102.51	
Silica Fume	353.5	\$	840.00	\$	148.46	
Fly Ash	353.5	\$	135.00	\$	23.86	
Fine Aggregate	1413.9	\$	26.00	\$	18.38	
Steel Fibers	0.0	\$1,600.00		\$	-	
Total \$ 384.48					384.48	

\$ 384.48

Mix Specifications				
Mix ID: S2				
W/C	0.24	Unitless		
HRWR Dosage Rate	0.04	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.00	Unitless		
Aggregate to Cement Ratio	1.00	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.68	Fraction of Volume		
Volume	0.20	cu. Ft		

Туре	Specific
	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials				
Туре	Specific			
	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	67.72	0.1354		
Fine Aggregate	32.28	0.0646		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.036	cu ft	2.22	
HRWR	0.03	0.006	cu ft	0.42	182.8
Portland Cement	0.27	0.053	cu ft	10.47	
Silica Fume	0.10	0.019	cu ft	2.62	
Fly Ash	0.10	0.021	cu ft	2.62	
Fine Aggregate	0.32	0.065	cu ft	10.47	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

Figure 67: Mix S2 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	ost/ton	Co	st/ cu. Yd
Water	300.3	\$	-	\$	-
HRWR (gallons)	6.52	\$	14.00	\$	91.27
Portland Cement	1413.9	\$	145.00	\$	102.51
Silica Fume	353.5	\$	840.00	\$	148.46
Fly Ash	353.5	\$	135.00	\$	23.86
Fine Aggregate	1413.9	\$	26.00	\$	18.38
Steel Fibers	0.0	\$1	1,600.00	\$	-
			Total	Ś	384 48

Total \$ 384.48

Mix Specifications		
Mix ID:	S	3
W/C	0.262	Unitless
HRWR Dosage Rate	0.0366	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.00	Unitless
Aggregate to Cement Ratio	1.50	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.59	Fraction of Volume
Volume	0.20	cu. Ft

∆ggregates

Aggregates				
Type	Specific			
Туре	Gravity			
Fine Aggregate	2.6			
Steel Fibers	7.8			
Weighted Average	2.60			

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	3.66	1.04	0.69

Mix Proportions		
Item	Percent	Volume (cu ft)
Water +HRWR + Cementitious	58.94	0.1179
Fine Aggregate	41.06	0.0821
Steel Fibers	0.00	0.0000
Total	100.00	0.2000

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.17	0.034	cu ft	2.10	
HRWR	0.03	0.005	cu ft	0.33	141.
Portland Cement	0.23	0.045	cu ft	8.88	
Silica Fume	0.08	0.016	cu ft	2.22	
Fly Ash	0.09	0.018	cu ft	2.22	
Fine Aggregate	0.41	0.082	cu ft	13.32	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 68: Mix S3 Proportions

Cubic Yard	d Calculation	5				
	Mix Wt. (lbs)	С	Cost/ton		Cost/ cu. Yo	
Water	283.9	\$	-	\$	-	
HRWR (gallons)	5.06	\$	14.00	\$	70.83	
Portland Cement	1199.2	\$	145.00	\$	86.94	
Silica Fume	299.8	\$	840.00	\$	125.91	
Fly Ash	299.8	\$	135.00	\$	20.24	
Fine Aggregate	1798.8	\$	26.00	\$	23.38	
Steel Fibers	0.0	\$:	1,600.00	\$	-	
			Total	\$	327.30	

Mix Specifications		
Mix ID:	S	4
W/C	0.262	Unitless
HRWR Dosage Rate	0.0366	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.00	Unitless
Aggregate to Cement Ratio	1.50	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.59	Fraction of Volume
Volume	0.20	cu. Ft

Aggregates

Aggregates				
Type	Specific			
Туре	Gravity			
Fine Aggregate	2.6			
Steel Fibers	7.8			
Weighted Average	2.60			

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	3.66	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	58.94	0.1179		
Fine Aggregate	41.06	0.0821		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.17	0.034	cu ft	2.10	
HRWR	0.03	0.005	cu ft	0.33	141.
Portland Cement	0.23	0.045	cu ft	8.88	
Silica Fume	0.08	0.016	cu ft	2.22	
Fly Ash	0.09	0.018	cu ft	2.22	
Fine Aggregate	0.41	0.082	cu ft	13.32	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 69: Mix S4 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	Cost/ton		st/ cu. Yd
Water	283.9	\$	-	\$	-
HRWR (gallons)	5.06	\$	14.00	\$	70.83
Portland Cement	1199.2	\$	145.00	\$	86.94
Silica Fume	299.8	\$	840.00	\$	125.91
Fly Ash	299.8	\$	135.00	\$	20.24
Fine Aggregate	1798.8	\$	26.00	\$	23.38
Steel Fibers	0.0	\$:	1,600.00	\$	-
			Total	\$	327.30

Mix Specifications				
Mix ID:	S	5		
W/C	0.262	Unitless		
HRWR Dosage Rate	0.0366	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.00	Unitless		
Aggregate to Cement Ratio	0.70	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.75	Fraction of Volume		
Volume	0.20	cu. Ft		

Туре	Specific
турс	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	3.66	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	75.46	0.1509		
Fine Aggregate	24.54	0.0491		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.22	0.043	cu ft	2.69	
HRWR	0.03	0.006	cu ft	0.42	181.
Portland Cement	0.29	0.058	cu ft	11.37	
Silica Fume	0.10	0.021	cu ft	2.84	
Fly Ash	0.11	0.023	cu ft	2.84	
Fine Aggregate	0.25	0.049	cu ft	7.96	
Steel Fibers	0.00	0.000	cu ft	0.00	

81.6 ml

Figure 70: Mix S5 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	Cost/ton		st/ cu. Yd
Water	363.5	\$	-	\$	-
HRWR (gallons)	6.48	\$	14.00	\$	90.69
Portland Cement	1535.5	\$	145.00	\$	111.32
Silica Fume	383.9	\$	840.00	\$	161.22
Fly Ash	383.9	\$	135.00	\$	25.91
Fine Aggregate	1074.8	\$	26.00	\$	13.97
Steel Fibers	0.0	\$:	1,600.00	\$	-
			Total	\$	403.12

Mix Specifications			
Mix ID:	S	6	
W/C	0.262	Unitless	
HRWR Dosage Rate	0.0366	Fraction of Cement wt	
SCM to Cement Ratio	0.5	Unitless	
Silica Fume to Fly Ash Ratio	1.00	Unitless	
Aggregate to Cement Ratio	1.00	Unitless	
Fiber Content	0.00	Fraction of Volume	
Paste Content	0.68	Fraction of Volume	
Volume	0.20	cu. Ft	

Mix Wt. (lbs) Cost/ton Cost/ cu. Yd 328.9 Water \$ \$ HRWR 5.86 \$ 14.00 \$ 82.06 (gallons) Portland \$ 145.00 \$ 100.73 1389.4 Cement Silica 347.3 \$ 840.00 \$ 145.88 Fume 347.3 \$ 135.00 23.45 Fly Ash \$ Fine 26.00 \$ 1389.4 \$ 18.06 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 370.18

Cubic Yard Calculations

Aggregates

Turno	Specific
туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Туре	Specific	
	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	3.66	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	68.28	0.1366	
Fine Aggregate	31.72	0.0634	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.20	0.039	cu ft	2.44	
HRWR	0.03	0.006	cu ft	0.38	164.
Portland Cement	0.26	0.052	cu ft	10.29	
Silica Fume	0.09	0.019	cu ft	2.57	
Fly Ash	0.10	0.021	cu ft	2.57	
Fine Aggregate	0.32	0.063	cu ft	10.29	
Steel Fibers	0.00	0.000	cu ft	0.00	

64.4 ml

Figure 71: Mix S6 Proportions

Mix Specifications			
Mix ID:	57		
W/C	0.262	Unitless	
HRWR Dosage Rate	0.0366	Fraction of Cement wt	
SCM to Cement Ratio	0.5	Unitless	
Silica Fume to Fly Ash Ratio	1.00	Unitless	
Aggregate to Cement Ratio	1.50	Unitless	
Fiber Content	0.00	Fraction of Volume	
Paste Content	0.59	Fraction of Volume	
Volume	0.20	cu. Ft	

Aggregates		
Tuno	Specific	
Туре	Gravity	
Fine Aggregate	2.6	
Steel Fibers	7.8	
Weighted Average	2.60	

Cementitious Materials		
Туре	Specific	
	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	3.66	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	58.94	0.1179	
Fine Aggregate	41.06	0.0821	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.17	0.034	cu ft	2.10	
HRWR	0.03	0.005	cu ft	0.33	141.9
Portland Cement	0.23	0.045	cu ft	8.88	
Silica Fume	0.08	0.016	cu ft	2.22	
Fly Ash	0.09	0.018	cu ft	2.22	
Fine Aggregate	0.41	0.082	cu ft	13.32	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

Figure 72: Mix S7 Proportions

Cubic Yard Calculations					
	Mix Wt. (lbs)	Cost/ton		n Cost/ cu.	
Water	283.9	\$	-	\$	-
HRWR (gallons)	5.06	\$	14.00	\$	70.83
Portland Cement	1199.2	\$	145.00	\$	86.94
Silica Fume	299.8	\$	840.00	\$	125.91
Fly Ash	299.8	\$	135.00	\$	20.24
Fine Aggregate	1798.8	\$	26.00	\$	23.38
Steel Fibers	0.0	\$1	1,600.00	\$	-
			Total	Ś	327.30

otal \$ 327.30

APPENDIX C: 3-VARIABLE RSM MIX PROPORTIONS

Mix Specifications				
Mix ID:	RSIV	13-1		
w/c	0.22	Unitless		
HRWR Dosage Rate	0.02	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.50	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.59	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd Water 262.4 \$ \$ _ HRWR 2.93 \$ 14.00 \$ 41.08 (gallons) Portland \$ 145.00 \$ 1272.7 92.27 Cement Silica 212.1 \$ 840.00 \$ 89.09 Fume 424.2 \$ 135.00 \$ 28.64 Fly Ash Fine 26.00 \$ 1781.8 \$ 23.16 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 274.24

Aggregates

Туре	Specific Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Туре	Specific Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	59.32	0.1186	
Fine Aggregate	40.68	0.0814	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
ltem	Fraction of Volume	Volume	Volume		
Water	0.16	0.031	cu ft	1.94	
HRWR	0.01	0.003	cu ft	0.19	82
Portland Cement	0.24	0.048	cu ft	9.43	
Silica Fume	0.06	0.011	cu ft	1.57	
Fly Ash	0.13	0.025	cu ft	3.14	
Fine Aggregate	0.41	0.081	cu ft	13.20	
Steel Fibers	0.00	0.000	cu ft	0.00	

2.3 ml

Figure 73: Mix 3-1 Proportions

Mix Specifications				
Mix ID:	RSIV	13-2		
w/c	0.22	Unitless		
HRWR Dosage Rate	0.02	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.00	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.59	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd Water 263.2 \$ \$ _ HRWR 2.94 \$ 14.00 \$ 41.20 (gallons) Portland \$ 145.00 \$ 1276.4 92.54 Cement Silica 319.1 \$ 840.00 \$ 134.02 Fume 319.1 \$ 135.00 21.54 Fly Ash \$ Fine 1786.9 26.00 \$ \$ 23.23 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 312.52

Aggregates

Turan	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Туре	Specific Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	59.21	0.1184		
Fine Aggregate	40.79	0.0816		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.16	0.031	cu ft	1.95	
HRWR	0.01	0.003	cu ft	0.19	82
Portland Cement	0.24	0.048	cu ft	9.45	
Silica Fume	0.09	0.017	cu ft	2.36	
Fly Ash	0.09	0.019	cu ft	2.36	
Fine Aggregate	0.41	0.082	cu ft	13.24	
Steel Fibers	0.00	0.000	cu ft	0.00	

2.5 ml

Figure 74: Mix 3-2 Proportions

Mix Specifications				
Mix ID:	RSIV	13-3		
w/c	0.22	Unitless		
HRWR Dosage Rate	0.06	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.50	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.60	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd 225.5 Water \$ \$ _ HRWR 8.73 \$ 14.00 \$ 122.23 (gallons) Portland \$ 145.00 \$ 91.52 1262.4 Cement Silica 210.4 \$ 840.00 \$ 88.37 Fume 420.8 \$ 135.00 \$ 28.40 Fly Ash Fine 26.00 \$ 1767.3 \$ 22.98 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 353.49

Aggregates

Aggregates			
Type	Specific		
туре	Gravity		
Fine Aggregate	2.6		
Steel Fibers	7.8		
Weighted Average	2.60		

Cementitious Materials			
Туре	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	59.65	0.1193		
Fine Aggregate	40.35	0.0807		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.13	0.027	cu ft	1.67	
HRWR	0.04	0.009	cu ft	0.56	244.8
Portland Cement	0.24	0.048	cu ft	9.35	
Silica Fume	0.06	0.011	cu ft	1.56	
Fly Ash	0.12	0.025	cu ft	3.12	
Fine Aggregate	0.40	0.081	cu ft	13.09	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 75: Mix 3-3 Proportions
Mix Specifications			
Mix ID:	RSN	RSM 3-4	
w/c	0.22	Unitless	
HRWR Dosage Rate	0.06	Fraction of Cement wt	
SCM to Cement Ratio	0.5	Unitless	
Silica Fume to Fly Ash Ratio	1.00	Unitless	
Aggregate to Cement Ratio	1.40	Unitless	
Fiber Content	0.00	Fraction of Volume	
Paste Content	0.60	Fraction of Volume	
Volume	0.20	cu. Ft	

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd 226.1 Water \$ \$ _ HRWR 8.76 \$ 14.00 \$ 122.58 (gallons) Portland \$ 145.00 \$ 91.78 1266.0 Cement Silica 316.5 \$ 840.00 \$ 132.93 Fume 316.5 \$ 135.00 \$ 21.36 Fly Ash Fine 1772.3 \$ 26.00 \$ 23.04 Aggregate Steel \$1,600.00 \$ 0.0 -Fibers Total \$ 391.69

Aggregates

Type	Specific
туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Туре	Specific Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6	1.04	0.69

Mix Proportions			
Item	Percent	Volume (cu ft)	
Water +HRWR + Cementitious	59.54	0.1191	
Fine Aggregate	40.46	0.0809	
Steel Fibers	0.00	0.0000	
Total	100.00	0.2000	

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.13	0.027	cu ft	1.67	
HRWR	0.04	0.009	cu ft	0.56	245.5
Portland Cement	0.24	0.048	cu ft	9.38	
Silica Fume	0.09	0.017	cu ft	2.34	
Fly Ash	0.09	0.019	cu ft	2.34	
Fine Aggregate	0.40	0.081	cu ft	13.13	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 76: Mix 3-4 Proportions

Civil Engineering/Weste	ern Transportation	Institute
Civil Engineering, " este	in Transportation	11151111110

Mix Specifications				
Mix ID: R		SM 3-5		
w/c	0.26	Unitless		
HRWR Dosage Rate	0.02	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.50	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.61	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd Water 304.2 \$ \$ _ HRWR 2.85 \$ 14.00 \$ 39.87 (gallons) Portland \$ 145.00 \$ 1235.4 89.57 Cement Silica \$ 840.00 \$ 205.9 86.48 Fume 411.8 \$ 135.00 \$ 27.80 Fly Ash Fine 26.00 \$ 1729.5 \$ 22.48 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 266.20

Aggregates

00 0	
Туре	Specific
	Glavity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Туре	Specific Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	60.52	0.1210		
Fine Aggregate	39.48	0.0790		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.036	cu ft	2.25	
HRWR	0.01	0.003	cu ft	0.18	79
Portland Cement	0.23	0.047	cu ft	9.15	
Silica Fume	0.06	0.011	cu ft	1.53	
Fly Ash	0.12	0.024	cu ft	3.05	
Fine Aggregate	0.39	0.079	cu ft	12.81	
Steel Fibers	0.00	0.000	cu ft	0.00	

9.9 ml

Figure 77: Mix 3-5 Proportions

Mix Specifications		
Mix ID:	RSIV	13-6
w/c	0.26	Unitless
HRWR Dosage Rate	0.02	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	1.00	Unitless
Aggregate to Cement Ratio	1.40	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.60	Fraction of Volume
Volume	0.20	cu. Ft

Cubic Yard Calculations					
	Mix Wt. (lbs) Cost/ton Cos		Cost/ton		st/ cu. Yd
Water	305.0	\$	-	\$	-
HRWR (gallons)	2.86	\$	14.00	\$	39.98
Portland Cement	1238.8	\$	145.00	\$	89.82
Silica Fume	309.7	\$	840.00	\$	130.08
Fly Ash	309.7	\$	135.00	\$	20.91
Fine Aggregate	1734.4	\$	26.00	\$	22.55
Steel Fibers	0.0	\$1	\$1,600.00		-
			Total	\$	303.33

Aggregates			
Type	Specific		
туре	Gravity		
Fine Aggregate	2.6		
Steel Fibers	7.8		
Weighted Average	2.60		

Cementitious Materials		
Type	Specific	
туре	Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	2	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	60.41	0.1208		
Fine Aggregate	39.59	0.0792		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.036	cu ft	2.26	
HRWR	0.01	0.003	cu ft	0.18	80.
Portland Cement	0.23	0.047	cu ft	9.18	
Silica Fume	0.08	0.017	cu ft	2.29	
Fly Ash	0.09	0.018	cu ft	2.29	
Fine Aggregate	0.40	0.079	cu ft	12.85	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

From RSM Model

Figure 78: Mix 3-6 Proportions

Mix Specifications				
Mix ID:	RSN	13-7		
w/c	0.26	Unitless		
HRWR Dosage Rate	0.06	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.50	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.61	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd Water 267.9 \$ \$ _ HRWR 8.48 \$ 14.00 \$ 118.67 (gallons) Portland \$ 145.00 \$ 1225.6 88.86 Cement Silica \$ 840.00 \$ 85.79 204.3 Fume 408.5 \$ 135.00 \$ 27.58 Fly Ash Fine 26.00 \$ 1715.9 \$ 22.31 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 343.21

Aggregates

00 0	
Туре	Specific Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Туре	Specific Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	60.83	0.1217		
Fine Aggregate	39.17	0.0783		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.16	0.032	cu ft	1.98	
HRWR	0.04	0.008	cu ft	0.54	237.7
Portland Cement	0.23	0.046	cu ft	9.08	
Silica Fume	0.06	0.011	cu ft	1.51	
Fly Ash	0.12	0.024	cu ft	3.03	
Fine Aggregate	0.39	0.078	cu ft	12.71	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 79: Mix 3-7 Proportions

Mix Specifications				
Mix ID:	RSN	13-8		
w/c	0.26	Unitless		
HRWR Dosage Rate	0.06	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.00	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.61	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd 268.7 Water \$ \$ _ HRWR 8.50 \$ 14.00 \$ 119.00 (gallons) Portland \$ 145.00 \$ 89.10 1229.0 Cement Silica 307.3 \$ 840.00 \$ 129.05 Fume 307.3 \$ 135.00 \$ 20.74 Fly Ash Fine 1720.6 26.00 \$ 22.37 \$ Aggregate Steel \$1,600.00 \$ 0.0 -Fibers Total \$ 380.26

Aggregates

Туре	Specific Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Туре	Specific Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	6	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	60.72	0.1214		
Fine Aggregate	39.28	0.0786		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.16	0.032	cu ft	1.99	
HRWR	0.04	0.008	cu ft	0.55	238.
Portland Cement	0.23	0.046	cu ft	9.10	
Silica Fume	0.08	0.017	cu ft	2.28	
Fly Ash	0.09	0.018	cu ft	2.28	
Fine Aggregate	0.39	0.079	cu ft	12.75	
Steel Fibers	0.00	0.000	cu ft	0.00	

38.3 ml

Figure 80: Mix 3-8 Proportions

Civil Engineering/West	ern Transportation	Institute
Civil Engliteet ing, it est	ern fransportation	11151111110

Mix Specifications				
Mix ID:	RSN	13-9		
w/c	0.206	Unitless		
HRWR Dosage Rate	0.045	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.75	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.59	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd 224.7 Water \$ \$ _ HRWR 6.65 \$ 14.00 \$ 93.06 (gallons) Portland \$ 145.00 \$ 1281.4 92.90 Cement Silica \$ 840.00 \$ 115.33 274.6 Fume 366.1 \$ 135.00 24.71 Fly Ash \$ Fine 26.00 \$ 1794.0 \$ 23.32 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 349.33

Aggregates

Туре	Specific
	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials		
Туре	Specific Gravity	
Portland Type I-II	3.15	
Fly Ash	2	
Silica Fume	2.2	

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	59.05	0.1181		
Fine Aggregate	40.95	0.0819		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume 0.027 cu ft		Mix Weight (Ibs)	
Water	0.13			1.66	
HRWR	0.03	0.007	cu ft	0.43	186.4
Portland Cement	0.24	0.048	cu ft	9.49	
Silica Fume	0.07	0.015 cu ft		2.03	
Fly Ash	0.11	0.022	cu ft	2.71	
Fine Aggregate	0.41	0.082	cu ft	13.29	
Steel Fibers	0.00	0.000	cu ft	0.00	

.86.4 ml

Figure 81: Mix 3-9 Proportions

Mix Specifications				
Mix ID:	RSM	3-10		
w/c	0.274	Unitless		
HRWR Dosage Rate	0.045	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.75	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.61	Fraction of Volume		
Volume	0.20	cu. Ft		

Mix Wt. (lbs) Cost/ton Cost/ cu. Yd Water 295.7 \$ \$ _ HRWR 6.32 \$ 14.00 \$ 88.53 (gallons) Portland \$ 145.00 \$ 1219.1 88.38 Cement Silica \$ 840.00 \$ 109.72 261.2 Fume 348.3 \$ 135.00 23.51 Fly Ash \$ Fine 1706.7 26.00 \$ \$ 22.19 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 332.32

Cubic Yard Calculations

Aggregates

Туре	Specific Gravity	
Fine Aggregate	2.6	
Steel Fibers	7.8	
Weighted Average	2.60	

Cementitious Materials			
Type	Specific		
Туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	61.04	0.1221		
Fine Aggregate	38.96	0.0779		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume 0.035 cu ft		Mix Weight (Ibs)	
Water	0.18			2.19	
HRWR	0.03	0.006	cu ft	0.41	177.3
Portland Cement	0.23	0.046	cu ft	9.03	
Silica Fume	0.07	0.014 cu ft		1.94	
Fly Ash	0.10	0.021	cu ft	2.58	
Fine Aggregate	0.39	0.078	cu ft	12.64	
Steel Fibers	0.00	0.000	cu ft	0.00	

77.3 ml

Figure 82: Mix 3-10 Proportions

\$

Cost/ton Cost/ cu. Yd

\$

Mix Specifications				
Mix ID:	RSM	M 3-11		
w/c	0.24	Unitless		
HRWR Dosage Rate	0.011	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.75	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.60	Fraction of Volume		
Volume	0.20	cu. Ft		

HRWR (gallons)	1.65	\$	14.00	\$ 23.07
Portland Cement	1258.0	\$	145.00	\$ 91.21
Silica Fume	269.6	\$	840.00	\$ 113.22
Fly Ash	359.4	\$	135.00	\$ 24.26
Fine Aggregate	1761.2	\$	26.00	\$ 22.90
Steel Fibers	0.0	\$1	L,600.00	\$ -
			Total	\$ 274.65

Cubic Yard Calculations

Water

Mix Wt. (lbs)

292.1

Aggregates

Туре	Specific Gravity	
Fine Aggregate	2.6	
Steel Fibers	7.8	
Weighted Average	2.60	

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	1.1364	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	59.79	0.1196		
Fine Aggregate	40.21	0.0804		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.17	0.035	cu ft	2.16	
HRWR	0.01	0.002	cu ft	0.11	4
Portland Cement	0.24	0.047	cu ft	9.32	
Silica Fume	0.07	0.015	cu ft	2.00	
Fly Ash	0.11	0.021	cu ft	2.66	
Fine Aggregate	0.40	0.080	cu ft	13.05	
Steel Fibers	0.00	0.000	cu ft	0.00	

5.2 ml

Figure 83: Mix 3-11 Proportions

	Appendix	: C:	3-V	ariable	RSM	Mix	Proporti	ons
--	----------	------	-----	---------	-----	-----	----------	-----

Mix Specifications				
Mix ID:	RSM	3-12		
w/c	0.24	Unitless		
HRWR Dosage Rate	0.079	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.75	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.60	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd 230.5 \$ Water \$ HRWR 11.25 \$ 14.00 \$ 157.49 (gallons) Portland \$ 145.00 \$ 1241.1 89.98 Cement Silica \$ 840.00 \$ 111.70 265.9 Fume 354.6 135.00 23.93 Fly Ash \$ \$ Fine \$ 1737.5 \$ 26.00 22.59 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 405.69

Aggregates

Type	Specific
туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
Туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer

Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	7.8636	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	60.34	0.1207		
Fine Aggregate	39.66	0.0793		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.14	0.027	cu ft	1.71	
HRWR	0.06	0.011	cu ft	0.72	315.
Portland Cement	0.23	0.047	cu ft	9.19	
Silica Fume	0.07	0.014	cu ft	1.97	
Fly Ash	0.11	0.021	cu ft	2.63	
Fine Aggregate	0.40	0.079	cu ft	12.87	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 84: Mix 3-12 Proportions

Mix Specifications			
Mix ID:	RSM	3-13	
w/c	0.24	Unitless	
HRWR Dosage Rate	0.045	Fraction of Cement wt	
SCM to Cement Ratio	0.5	Unitless	
Silica Fume to Fly Ash Ratio	0.33	Unitless	
Aggregate to Cement Ratio	1.40	Unitless	
Fiber Content	0.00	Fraction of Volume	
Paste Content	0.60	Fraction of Volume	
Volume	0.20	cu. Ft	

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd Water 260.3 \$ \$ _ HRWR 6.46 \$ 14.00 \$ 90.46 (gallons) Portland \$ 145.00 \$ 1245.7 90.31 Cement Silica \$ 840.00 \$ 64.84 154.4 Fume 468.5 \$ 135.00 \$ Fly Ash 31.62 Fine 26.00 \$ 1744.0 \$ 22.67 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 299.91

Aggregates

Туре	Specific
	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials				
Туре	Specific Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	60.19	0.1204		
Fine Aggregate	39.81	0.0796		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.031	cu ft	1.93	
HRWR	0.03	0.006	cu ft	0.42	181.2
Portland Cement	0.23	0.047	cu ft	9.23	
Silica Fume	0.04	0.008	cu ft	1.14	
Fly Ash	0.14	0.028	cu ft	3.47	
Fine Aggregate	0.40	0.080	cu ft	12.92	
Steel Fibers	0.00	0.000	cu ft	0.00	

81.2 ml

Figure 85: Mix 3-13 Proportions

Mix Specifications				
Mix ID:	RSM	3-14		
W/C	0.24	Unitless		
HRWR Dosage Rate	0.045	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	1.17	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.60	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations						
	Mix Wt. (lbs)	С	Cost/ton		st/ cu. Yd	
Water	261.6	\$	-	\$	-	
HRWR (gallons)	6.49	\$	14.00	\$	90.91	
Portland Cement	1251.8	\$	145.00	\$	90.76	
Silica Fume	337.5	\$	840.00	\$	141.74	
Fly Ash	288.4	\$	135.00	\$	19.47	
Fine Aggregate	1752.5	\$	26.00	\$	22.78	
Steel Fibers	0.0	\$1,600.00		\$	-	
			Total	\$	365.65	

Aggregates				
Type	Specific			
туре	Gravity			
Fine Aggregate	2.6			
Steel Fibers	7.8			
Weighted Average	2.60			

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	59.99	0.1200		
Fine Aggregate	40.01	0.0800		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.16	0.031	cu ft	1.94	
HRWR	0.03	0.006	cu ft	0.42	182.1
Portland Cement	0.24	0.047	cu ft	9.27	
Silica Fume	0.09	0.018	cu ft	2.50	
Fly Ash	0.09	0.017	cu ft	2.14	
Fine Aggregate	0.40	0.080	cu ft	12.98	
Steel Fibers	0.00	0.000	cu ft	0.00	

ml

From RSM Model

Figure 86: Mix 3-14 Proportions

Mix Specifications				
Mix ID:	RSM	3-15 C		
w/c	0.24	Unitless		
HRWR Dosage Rate	0.045	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.75	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.60	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations					
	Mix Wt. (lbs)	Cost/ton		n Cost/ cu. '	
Water	261.1	\$	\$ -		-
HRWR (gallons)	6.48	\$	14.00	\$	90.74
Portland Cement	1249.5	\$	145.00	\$	90.59
Silica Fume	267.7	\$	840.00	\$	112.45
Fly Ash	357.0	\$	135.00	\$	24.10
Fine Aggregate	1749.3	\$	26.00	\$	22.74
Steel Fibers	0.0	\$1,600.00		\$	-
Total \$ 340.61				340.61	

Туре	Specific Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Туре	Specific		
.,pc	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	60.07	0.1201		
Fine Aggregate	39.93	0.0799		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.031	cu ft	1.93	
HRWR	0.03	0.006	cu ft	0.42	181.7
Portland Cement	0.24	0.047	cu ft	9.26	
Silica Fume	0.07	0.014	cu ft	1.98	
Fly Ash	0.11	0.021	cu ft	2.64	
Fine Aggregate	0.40	0.080	cu ft	12.96	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 87: Mix 3-15C Proportions

Mix Specifications				
Mix ID:	RSM	3-16 C		
w/c	0.24	Unitless		
HRWR Dosage Rate	0.045	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.75	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.60	Fraction of Volume		
Volume	0.20	cu. Ft		

Cubic Yard Calculations Mix Wt. (lbs) Cost/ton Cost/ cu. Yd Water 261.1 \$ \$ HRWR 6.48 \$ 14.00 \$ 90.74 (gallons) Portland \$ 145.00 \$ 1249.5 90.59 Cement Silica \$ 840.00 \$ 112.45 267.7 Fume 357.0 \$ 135.00 Fly Ash \$ 24.10 Fine 26.00 \$ 1749.3 \$ 22.74 Aggregate Steel \$ 0.0 \$1,600.00 -Fibers Total \$ 340.61

Aggregates

Type	Specific
туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Туре	Specific Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.5	1.04	0.69

Mix Proportions				
Item	Percent	Volume (cu ft)		
Water +HRWR + Cementitious	60.07	0.1201		
Fine Aggregate	39.93	0.0799		
Steel Fibers	0.00	0.0000		
Total	100.00	0.2000		

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.031	cu ft	1.93	
HRWR	0.03	0.006	cu ft	0.42	181.7
Portland Cement	0.24	0.047	cu ft	9.26	
Silica Fume	0.07	0.014	cu ft	1.98	
Fly Ash	0.11	0.021	cu ft	2.64	
Fine Aggregate	0.40	0.080	cu ft	12.96	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 88: Mix 3-16 C Proportions

APPENDIX D: OPTIMIZATION MIX PROPORTIONS

Mix Specifications		
Mix ID:	31	И1
W/C	0.236	Unitless
HRWR Dosage Rate	0.0415	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	0.378	Unitless
Aggregate to Cement Ratio	1.40	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.60	Fraction of Volume
Volume	0.20	cu. Ft

Cubic Yard Calculations						
	Mix Wt. (lbs)	С	ost/ton	Cost/ cu. Yo		
Water	259.7	\$	\$-		-	
HRWR (gallons)	5.98	\$	14.00	\$	83.75	
Portland Cement	1250.5	\$	145.00	\$	90.66	
Silica Fume	171.5	\$	840.00	\$	72.02	
Fly Ash	453.8	\$	135.00	\$	30.63	
Fine Aggregate	1750.8	\$	26.00	\$	22.76	
Steel Fibers	0.0	\$1,600.00		\$	-	
Total \$ 299.83						

Aggregates					
Type	Specific				
Туре	Gravity				
Fine Aggregate	2.6				
Steel Fibers	7.8				
Weighted Average	2.60				

Cementitious Materials					
Turno	Specific				
Туре	Gravity				
Portland Type I-II	3.15				
Fly Ash	2				
Silica Fume	2.2				

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.15	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	60.03	0.1201			
Fine Aggregate	39.97	0.0799			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.15	0.031	cu ft	1.92	
HRWR	0.03	0.006	cu ft	0.38	167
Portland Cement	0.24	0.047	cu ft	9.26	
Silica Fume	0.05	0.009	cu ft	1.27	
Fly Ash	0.13	0.027	cu ft	3.36	
Fine Aggregate	0.40	0.080	cu ft	12.97	
Steel Fibers	0.00	0.000	cu ft	0.00	

.7 ml

Figure 89: Mix 3M1 Proportions

	Appendix	D: Opt	imization	Mix	Proportions
--	----------	--------	-----------	-----	-------------

Mix Specifications					
Mix ID:	31	V12			
w/c	0.237	Unitless			
HRWR Dosage Rate	0.0458	Fraction of Cement wt			
SCM to Cement Ratio	0.5	Unitless			
Silica Fume to Fly Ash Ratio	0.305	Unitless			
Aggregate to Cement Ratio	1.40	Unitless			
Fiber Content	0.00	Fraction of Volume			
Paste Content	0.60	Fraction of Volume			
Volume	0.20	cu. Ft			

Cubic Yard Calculations						
	Mix Wt. (lbs)	С	ost/ton	Cost/ cu. Yo		
Water	256.2	\$	\$-		-	
HRWR (gallons)	6.59	\$	14.00	\$	92.24	
Portland Cement	1248.1	\$	145.00	\$	90.48	
Silica Fume	145.9	\$	840.00	\$	61.29	
Fly Ash	478.1	\$	135.00	\$	32.27	
Fine Aggregate	1747.3	\$	26.00	\$	22.71	
Steel Fibers	0.0	\$1	\$1,600.00		-	
			Total	\$	299.00	

Type	Specific
туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
Туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer

	Dorcont of		Fraction
Turne	Comment	Specific	FIACUUI
туре	Cement	Gravity	of weight
	Wt	,	in Water
Chryso Premia 150	4.58	1.04	0.69

Mix Proportions		
Item	Percent	Volume (cu ft)
Water +HRWR + Cementitious	60.11	0.1202
Fine Aggregate	39.89	0.0798
Steel Fibers	0.00	0.0000
Total	100.00	0.2000

Mix Weights						
ltem	Fraction of Volume	Volume		Mix Weight (Ibs)		
Water	0.15	0.030	cu ft	1.90		
HRWR	0.03	0.007	cu ft	0.42	184.8	ml
Portland Cement	0.24	0.047	cu ft	9.24		
Silica Fume	0.04	0.008	cu ft	1.08		
Fly Ash	0.14	0.028	cu ft	3.54		
Fine Aggregate	0.40	0.080	cu ft	12.94		
Steel Fibers	0.00	0.000	cu ft	0.00		

Figure 90: Mix 3M2 Proportions

	Appendix	D: Opt	imization	Mix	Proportions
--	----------	--------	-----------	-----	-------------

Mix Specifications		
Mix ID:	31	/ 13
W/C	0.274	Unitless
HRWR Dosage Rate	0.0432	Fraction of Cement wt
SCM to Cement Ratio	0.5	Unitless
Silica Fume to Fly Ash Ratio	0.425	Unitless
Aggregate to Cement Ratio	1.40	Unitless
Fiber Content	0.00	Fraction of Volume
Paste Content	0.61	Fraction of Volume
Volume	0.20	cu. Ft

Cubic Yard Calculations					
	Mix Wt. (lbs)	С	Cost/ton		st/ cu. Yd
Water	297.4	\$	-	\$	-
HRWR (gallons)	6.06	\$	14.00	\$	84.79
Portland Cement	1216.3	\$	145.00	\$	88.18
Silica Fume	181.3	\$	840.00	\$	76.14
Fly Ash	426.9	\$	135.00	\$	28.81
Fine Aggregate	1702.8	\$	26.00	\$	22.14
Steel Fibers	0.0	\$1,600.00		\$	-
			Total	\$	300.07

Туре	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials			
Type	Specific		
туре	Gravity		
Portland Type I-II	3.15		
Fly Ash	2		
Silica Fume	2.2		

High Range Water Reducer			
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4 32	1 04	0.69

Mix Proportions		
Item	Percent	Volume (cu ft)
Water +HRWR + Cementitious	61.13	0.1223
Fine Aggregate	38.87	0.0777
Steel Fibers	0.00	0.0000
Total	100.00	0.2000

Mix Weights					
Item	Fraction of Volume	Volume		Mix Weight (Ibs)	
Water	0.18	0.035	cu ft	2.20	
HRWR	0.03	0.006	cu ft	0.39	169.
Portland Cement	0.23	0.046	cu ft	9.01	
Silica Fume	0.05	0.010	cu ft	1.34	
Fly Ash	0.13	0.025	cu ft	3.16	
Fine Aggregate	0.39	0.078	cu ft	12.61	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 91: Mix 3M3 Proportions

	Appendix	D: Opt	imization	Mix	Proportions
--	----------	--------	-----------	-----	-------------

Mix Specifications				
Mix ID:	31	VI4		
W/C	0.216	Unitless		
HRWR Dosage Rate	0.0493	Fraction of Cement wt		
SCM to Cement Ratio	0.5	Unitless		
Silica Fume to Fly Ash Ratio	0.683	Unitless		
Aggregate to Cement Ratio	1.40	Unitless		
Fiber Content	0.00	Fraction of Volume		
Paste Content	0.59	Fraction of Volume		
Volume	0.20	cu. Ft		

L

Cubic Yard Calculations						
	Mix Wt. (lbs)	Cost/ton		s) Cost/ton Cost/ c		st/ cu. Yd
Water	230.9	\$	-	\$	-	
HRWR (gallons)	7.22	\$	14.00	\$	101.10	
Portland Cement	1270.8	\$	145.00	\$	92.13	
Silica Fume	257.9	\$	840.00	\$	108.34	
Fly Ash	377.4	\$	135.00	\$	25.48	
Fine Aggregate	1779.1	\$	26.00	\$	23.13	
Steel Fibers	0.0	\$1,600.00		\$	-	
			Total	\$	350.18	

Aggregates

Turno	Specific
Туре	Gravity
Fine Aggregate	2.6
Steel Fibers	7.8
Weighted Average	2.60

Cementitious Materials				
Type	Specific			
туре	Gravity			
Portland Type I-II	3.15			
Fly Ash	2			
Silica Fume	2.2			

High Range Water Reducer

Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water
Chryso Premia 150	4.93	1.04	0.69

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	59.39	0.1188			
Fine Aggregate	40.61	0.0812			
Steel Fibers	0.00	0.0000			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume			Mix Weight (Ibs)	
Water	0.14	0.027	cu ft	1.71	
HRWR	0.04	0.007	cu ft	0.46	202.5
Portland Cement	0.24	0.048	cu ft	9.41	
Silica Fume	0.07	0.014	cu ft	1.91	
Fly Ash	0.11	0.022	cu ft	2.80	
Fine Aggregate	0.41	0.081	cu ft	13.18	
Steel Fibers	0.00	0.000	cu ft	0.00	

Figure 92: Mix 3M4 Proportions

ml

Mix Specifications					
Mix ID	: 31	Л4			
W/C	0.240	Unitless			
HRWR Dosage Bate	0.045	Fraction of			
The bosage nate	0.045	Cement wt			
SCM to Cement Ratio	0.5	Unitless			
Silica Fume to Fly Ash Ratio	0.750	Unitless			
Aggregate to Cement Ratio	1.40	Unitless			
Eiber Content	0.02	Fraction of			
Fiber content	0.02	Volume			
Pasta Contant	0.62	Fraction of			
	0.02	Volume			
Volume		cu. Ft			

Cubic Yard Calculations					
	Mix Wt. (lbs)	(Cost/ton		st/ cu. Yd
Water	271.5	\$	-	\$	-
HRWR	6.74	ć	14.00	ć	9/ 37
(gallons)	0.74	ç	14.00	Ş	54.57
Portland	1299 5	¢	145.00	¢	94 21
Cement	1255.5	Ŷ	145.00	Ŷ	54.21
Silica Fume	278.5	\$	840.00	\$	116.95
Fly Ash	371.3	\$	135.00	\$	25.06
Fine	1556 /	ć	26.00	ć	20.23
Aggregate	1550.4	Ŷ	20.00	Ŷ	20.25
Steel Fibers	262.8	Ś	1 600 00	Ś	210.26
Steel Tibers	202.0	Ŷ	1,000.00	Ŷ	210.20
			Total	\$	561.09

Aggregates				
Turne	Specific			
Туре	Gravity			
Fine Aggregate				
Steel Fibers				
Weighted Average	3.35			
theighted / therage	0.00			

Cementitious Materials				
Туре	Specific Gravity			
Portland Type I-II				
Fly Ash				
Silica Fume				

High Range Water Reducer					
Туре	Percent of Cement Wt	Specific Gravity	Fraction of Weight in Water		
Chryso Premia 150	4.5				

Mix Proportions					
Item	Percent	Volume (cu ft)			
Water +HRWR + Cementitious	62.47	0.1249			
Fine Aggregate	35.53	0.0711			
Steel Fibers	2.00	0.0040			
Total	100.00	0.2000			

Mix Weights					
ltem	Fraction of Volume	Volume		Mix Weight (lbs)	
Water	0.16	0.032	cu ft	2.01	
HRWR	0.03	0.007	cu ft	0.43	189
Portland Cement	0.24	0.049	cu ft	9.63	
Silica Fume	0.08	0.015	cu ft	2.06	
Fly Ash	0.11	0.022	cu ft	2.75	
Fine Aggregate	0.36	0.071	cu ft	11.53	
Steel Fibers	0.02	0.004	cu ft	1.95	

189.0 ml

Figure 93: Selected Mix with Steel Fibers

This public document was published in electronic format at no cost for printing and distribution.